分析 有条件利用球的截面的性质求得球心到截面圆的距离,再求出垂直折起的4个小直角三角形的高,相加即得所求
解答 解:由题意可得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1,
由于鸡蛋的表面积为4π,故鸡蛋(球)的半径为1,故球心到截面圆的距离为$\sqrt{1-\frac{1}{4}}$=$\frac{\sqrt{3}}{2}$,
而垂直折起的4个小直角三角形的高为$\frac{1}{2}$,
故鸡蛋中心(球心)与蛋巢底面的距离为$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$.
点评 本题主要考查球的截面的性质,图形的折叠问题,点、线、面间的位置关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | h=5.6+4.8sinθ | B. | h=5.6+4.8cosθ | ||
| C. | h=5.6+4.8cos(θ+$\frac{π}{2}$) | D. | h=5.6+4.8sin(θ-$\frac{π}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com