精英家教网 > 高中数学 > 题目详情
16.函数f(x)=x3-3x,x∈[0,2]的最小值是-2.

分析 由题意求导f′(x)=3x2-3=3(x+1)(x-1),从而判断函数的单调性并求最值即可.

解答 解:∵f(x)=x3-3x,
∴f′(x)=3x2-3=3(x+1)(x-1),
故f(x)在[0,1]上是减函数,在[1,2]上是增函数,
故fmin(x)=f(1)=1-3=-2;
故答案为:-2.

点评 本题考查了导数的综合应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.长时间用手机上网严重影响着学生的健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周手机上网的时长超过21小时,则称为“过度用网”.
(Ⅰ)请根据样本数据,分别估计A,B两班的学生平均每周上网时长的平均值;
(Ⅱ)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;
(Ⅲ)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为ξ,写出ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=xlnx,g(x)=-x2+ax-3(a∈R).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=lnx,g(x)=$\frac{a}{x}$(a是常数),F(x)=f(x)-g(x)
(Ⅰ)当a<0时,求函数F(x)的单调区间;
(Ⅱ)若F(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(Ⅲ)是否存在实数m,使得函数y=g($\frac{2a}{{x}^{2}+1}$)+m-1(a≠0)的图象与函数y=f(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-ax2-(1-2a)x(a>0).
(1)若?x>0,使得不等式f(x)>6a2-4a成立,求实数a的取值范围.
(2)设函数y=f(x)图象上任意不同的两点为A(x1,y1),B(x2,y2),线段AB的中点为C(x0,y0),记直线AB的斜率为k,证明:k>f′(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-1B1C1中,已知AB⊥侧面BB1CC1,BC=$\sqrt{2}$,AB=BB1=2,∠BCC1=$\frac{π}{4}$,点E为棱BB1的中点
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)求点E到平面ACC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C上的任意点M(x,y)与两个定点O(0,0),A(3,0)的距离的比为$\frac{1}{2}$
(1)求曲线C的方程;
(2)已知直线x-y+2=0与曲线C交于E,F两点,求三角形EOF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx+ax-a2x2(a≥0).
(1)若x=1是函数y=f(x)的极值点,求a的值;
(2)若f(x)<0在定义域内恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.正数x,y满足x3+y3=x-y,不等式x2+λy2≤1任意x,y为正数恒成立,求实数λ的最大值.

查看答案和解析>>

同步练习册答案