精英家教网 > 高中数学 > 题目详情
17.函数y=$\frac{{{x^2}+2x+2}}{x+1}$的值域是(  )
A.{y|y<-2或y>2}B.{y|y≤-2或y≥2}C.{y|-2≤y≤2}D.$\left\{{y|y≤-2\sqrt{2}或y≥2\sqrt{2}}\right\}$

分析 把已知函数式变形,然后分类利用基本不等式求得函数的最值,则函数的值域可求.

解答 解:y=$\frac{{{x^2}+2x+2}}{x+1}$=$\frac{(x+1)^{2}+1}{x+1}=(x+1)+\frac{1}{x+1}$,
当x+1>0时,有$y=(x+1)+\frac{1}{x+1}≥2\sqrt{(x+1)•\frac{1}{x+1}}=2$,
当且仅当x+1=$\frac{1}{x+1}$,即x+1=1,也就是x=0时上式等号成立;
当x+1<0时,有y=-[-(x+1)+$\frac{1}{-(x+1)}$]$≤-\sqrt{[-(x+1)]•\frac{1}{-(x+1)}}=-2$,
当且仅当-(x+1)=-$\frac{1}{x+1}$,即x+1=-1,也就是x=-2时上式等号成立.
∴函数y=$\frac{{{x^2}+2x+2}}{x+1}$的值域是{y|y≤-2或y≥2}.
故选:B.

点评 本题考查函数值域的求法,训练了利用基本不等式求函数的最值,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,已知AC=b,∠B=α,∠A=2∠B.则边长a=2bcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若实数a=20.1,b=log32,c=log0.34,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,过点P(0,m)(m>0)斜率为1的直线与双曲线C交于A、B两点,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-2
(Ⅰ)求双曲线方程;
(Ⅱ)如果Q为双曲线C右支上动点F为双曲线的右焦点,在x轴的负半釉上是否存在定点M便得∠QFM=2∠QMF?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合M={x|x2-2x<0},集合N={x|x>1},则集合M∩(∁UN)=(  )
A.{x|0<x<1}B.{x|0<x≤1}C.{x|0<x<2}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={x||1-2x|<3},B={x|$\frac{1+2x}{3-x}$<0},那么A∩B=(  )
A.(-1,$\frac{1}{2}$)∪(2,3)B.(2,3)C.(-$\frac{1}{2}$,2)D.(-1,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\vec a=(\sqrt{3}sinx,\;\;2{cos^2}x-1),\;\;\overrightarrow b=(2cosx,\;\;1)$,且函数$f(x)=\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)在区间$[0,\;\;\frac{π}{2}]$上的最大值和最小值;
(2)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若a>0,设命题p:{x|x2-4ax+3a2≥0},命题q:{x|x2-x-6≥0,且x2+2x-8<0}
(1)如果a=1,且p∧q为真时,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足$\left\{\begin{array}{l}kx-y+2≥0\\ x+y-2≥0\\ y≥0\end{array}\right.(k<0)$,若目标函数z=y-x的最小值是-4,则k的值为(  )
A.$-\frac{1}{3}$B.-3C.$-\frac{1}{2}$D.-2

查看答案和解析>>

同步练习册答案