分析 (1)直接利用数量积的坐标运算求得f(x),然后利用辅助角公式化简,再由x的范围求得相位的范围,进一步求得函数的最值;
(2)直接利用相位在正弦函数的减区间内列不等式求得x的范围,则函数f(x)的单调减区间可求.
解答 解:(1)∵$\vec a=(\sqrt{3}sinx,\;\;2{cos^2}x-1),\;\;\overrightarrow b=(2cosx,\;\;1)$,
∴$f(x)=\overrightarrow a•\overrightarrow b$=$2\sqrt{3}sinxcosx+2co{s}^{2}x-1$
=$\sqrt{3}sin2x+cos2x$=$2sin(2x+\frac{π}{6})$,
∵x∈$[0,\;\;\frac{π}{2}]$,
∴$2x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}]$,
∴$-\frac{1}{2}≤f(x)≤1$,
∴f(x)的最大值为2,最小值为-1;
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3}{2}π+2kπ(k∈Z)$,
得$\frac{π}{6}+kπ≤x≤\frac{2}{3}π+kπ,(k∈Z)$,
∴f(x)的单调递减区间为$[\frac{π}{6}+kπ,\;\;\frac{2}{3}π+kπ](k∈Z)$.
点评 本题考查平面向量的数量积运算,考查了数量积的坐标表示,考查三角函数的图象和性质,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{3}{2}$+$\sqrt{x+\frac{9}{4}}$(x>-$\frac{9}{4}$) | B. | y=$\frac{3}{2}-\sqrt{x+\frac{9}{4}}$(x>-$\frac{9}{4}$) | C. | y=$\frac{3}{2}$+$\sqrt{x+\frac{9}{4}}$(x>-2) | D. | y=$\frac{3}{2}-\sqrt{x+\frac{9}{4}}$(x>-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {y|y<-2或y>2} | B. | {y|y≤-2或y≥2} | C. | {y|-2≤y≤2} | D. | $\left\{{y|y≤-2\sqrt{2}或y≥2\sqrt{2}}\right\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com