精英家教网 > 高中数学 > 题目详情
20.函数y=x2-3x(x<1)的反函数是(  )
A.y=$\frac{3}{2}$+$\sqrt{x+\frac{9}{4}}$(x>-$\frac{9}{4}$)B.y=$\frac{3}{2}-\sqrt{x+\frac{9}{4}}$(x>-$\frac{9}{4}$)C.y=$\frac{3}{2}$+$\sqrt{x+\frac{9}{4}}$(x>-2)D.y=$\frac{3}{2}-\sqrt{x+\frac{9}{4}}$(x>-2)

分析 由y=x2-3x(x<1),解得:x=$\frac{3}{2}$-$\sqrt{\frac{9}{4}+y}$,(y>-2),把x与y互换即可得出.

解答 解:由y=x2-3x(x<1),解得:x=$\frac{3}{2}$-$\sqrt{\frac{9}{4}+y}$,(y>-2),
把x与y互换可得:y=$\frac{3}{2}$-$\sqrt{\frac{9}{4}+x}$(x>-2).
∴函数y=x2-3x(x<1)的反函数是:y=$\frac{3}{2}$-$\sqrt{\frac{9}{4}+x}$,(x>-2).
故选:D.

点评 本题考查了互为反函数的求法及其性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知直线x+y=3m与直线x-y=m的交点在方程x2+y2=5的曲线上,m的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2cosπx•cos2$\frac{φ}{2}$+sin[(x+1)π]•sinφ-cosπx(0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求φ的值及图中x0的值:
(2)将函数f(x)的图象上的各点向左平移$\frac{1}{6}$个单位长度.再将所得图象上各点的横坐标不变.纵坐标伸长到原来的$\sqrt{3}$倍.得到函数g(x)的图象.求函数g(x)在区间[-$\frac{1}{2}$,$\frac{1}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若实数a=20.1,b=log32,c=log0.34,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知m∈R,则“m≠5”是“曲线$\frac{x^2}{m}+\frac{y^2}{5}=1$为椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,过点P(0,m)(m>0)斜率为1的直线与双曲线C交于A、B两点,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-2
(Ⅰ)求双曲线方程;
(Ⅱ)如果Q为双曲线C右支上动点F为双曲线的右焦点,在x轴的负半釉上是否存在定点M便得∠QFM=2∠QMF?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合M={x|x2-2x<0},集合N={x|x>1},则集合M∩(∁UN)=(  )
A.{x|0<x<1}B.{x|0<x≤1}C.{x|0<x<2}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\vec a=(\sqrt{3}sinx,\;\;2{cos^2}x-1),\;\;\overrightarrow b=(2cosx,\;\;1)$,且函数$f(x)=\overrightarrow a•\overrightarrow b$.
(1)求函数f(x)在区间$[0,\;\;\frac{π}{2}]$上的最大值和最小值;
(2)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=lg[sin(πx)•sin(2πx)•sin(3πx)•sin(4πx)]的定义域与区间[0,1]的交集由n个开区间组成,则n的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案