精英家教网 > 高中数学 > 题目详情
15.已知直线x+y=3m与直线x-y=m的交点在方程x2+y2=5的曲线上,m的值为±1.

分析 先由直线方程组成方程组,求得交点坐标,再代入圆的方程,即可求出结论.

解答 解:由直线x+y=3m与直线x-y=m联立方程,组成方程组
$\left\{\begin{array}{l}{x+y=3m}\\{x-y=m}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2m}\\{y=m}\end{array}\right.$;
又这两条曲线的交点在方程x2+y2=5的曲线上,
所以(2m)2+m2=5,
解得m=±1.
故答案为:±1.

点评 本题以方程为载体,考查了点与圆的位置关系,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.己知点A(1,0),B(0,1),C(2sin(θ-$\frac{π}{4}$),cos(θ-$\frac{π}{4}$)),且|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|.
(1)求tan(θ-$\frac{π}{4}$)的值;
(2)若θ-$\frac{π}{4}$∈[0,$\frac{π}{2}$],求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,且2Tn=4Sn-(n2+n),n∈N*
(1)证明:数列{an+1}为等比数列;
(2)设bn=$\frac{n+1}{{a}_{n}+1}$,比较b1+b2+…+bn与3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若${C}_{n}^{13}$=${C}_{n}^{7}$,则${C}_{n}^{18}$=190.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式|2x-a|<b的解集是(2,4),则a=6,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.求点P(4,5)关于M(3,-2)对称的点Q的坐标(2,-9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$\frac{sin87°-cos63°cos60°}{cos27°}$等于(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=3sinx+mcosx(m<0),当x=α时,f(x)取得最大值5,则tanα的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=x2-3x(x<1)的反函数是(  )
A.y=$\frac{3}{2}$+$\sqrt{x+\frac{9}{4}}$(x>-$\frac{9}{4}$)B.y=$\frac{3}{2}-\sqrt{x+\frac{9}{4}}$(x>-$\frac{9}{4}$)C.y=$\frac{3}{2}$+$\sqrt{x+\frac{9}{4}}$(x>-2)D.y=$\frac{3}{2}-\sqrt{x+\frac{9}{4}}$(x>-2)

查看答案和解析>>

同步练习册答案