精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足下列三个条件:
①对任意的x∈R,都有f(x+4)=f(x);
②对任意的0≤x1<x2≤2,都有f(x1)<f(x2);
③y=f(x+2)的图象关于y轴对称,
则下列结论中,正确的是(  )
A、f(7)<f(4.5)<f(6.5)
B、f(7)<f(6.5)<f(4.5)
C、f(4.5)<f(6.5)<f(7)
D、f(4.5)<f(7)<f(6.5)
考点:抽象函数及其应用
专题:函数的性质及应用
分析:先把函数的性质研究清楚,由三个条件知函数周期为4,其对称轴方程为x=2,在区间[0,2]上是增函数,观察四个选项发现自变量都不在已知的单调区间内故应用相关的性质将其值用区间[0,2]上的函数值表示出,以方便利用单调性比较大小.
解答: 解:由①f(x+4)=f(x)知函数的周期是4;
由②知函数在区间[0,2]上是增函数,
由③y=f(x+2)的图象关于y轴对称,知函数的对称轴为x=2;
∴f(7)=f(3)=f(2+1)=f(2-1)=f(1),
f(4.5)=f(0.5),
f(6.5)=f(2.5)=f(2+0.5)=f(2-0.5)=f(1.5)
∵0<0.5<1<1.5<2,函数y=f(x)在区间[0,2]上是增函数
∴f(0.5)<f(1)<f(1.5),即f(4.5)<f(7)<f(6.5)
故选:D.
点评:本题考点是函数单调性的应用,综合考查了函数的周期性,函数的对称性以及函数图象的平移规律,涉及到了函数的三个主要性质,同时考查了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某厂家拟在2014年举行的促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=3-
k
m+1
(k为常数).如果不搞促销活动,则该产品的年销量只能是1万件,已知2014年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)求k的值,并求年促销费用为9万元时,该厂的年产量为多少万件?
(2)将2014年该产品的利润y(万元)表示为年促销费用m(万元)的函数;
(3)该厂家2014年的促销费用投入多少万元时,厂家的利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,cosC=
3
10

(1)若
CB
CA
=
9
2
,求c的最小值;
(2)设向量
x
=(2sinB,-
3
),
y
=(cos2B,1-2sin2
B
2
),且
x
y
,求∠B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=log0.20.3,b=log0.30.2,c=log0.30.1,则a,b,c的大小关系为(  )
A、a>b>c
B、b>a>c
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是椭圆
x2
4
+y2=1
上一点,且在第一象限内移动;O为原点,A(2,0),B(0,1),则四边形OAPB的面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,an>0,Sn是它前n项的和,且4Sn=(an+1)2,则数列{an}的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足(t-1)Sn=t(an-2),(t为常数,t≠0且t≠1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=Sn-1,且数列{bn}为等比数列.
①求t的值;
②若cn=(-an)•log3(-bn),求数列{cn}的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(1,3),
b
=(-1,1),则
a
b
=(  )
A、2B、1C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知E、F分别是矩形ABCD的边BC、CD的中点,EF与AC交于点G,若
AB
=
a
AD
=
b
,用
a
b
表示
AG

查看答案和解析>>

同步练习册答案