精英家教网 > 高中数学 > 题目详情
13.下面使用类比推理正确的是(  )
A.“若a•3=b•3,则a=b”类推出“若a•0=b•0,则a=b”
B.“若(a+b)c=ac+bc”类推出“(a•b)c=ac•bc”
C.“(ab)n=anbn”类推出“(a+b)n=an+bn
D.“若(a+b)c=ac+bc”类推出“$\frac{a+b}{c}$=$\frac{a}{c}$+$\frac{b}{c}$  (c≠0)”

分析 判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.另外还要看这个推理过程是否符合实数的性质.

解答 解:对于A:“若a•3=b•3,则a=b”类推出“若a•0=b•0,则a=b”是错误的,因为0乘任何数都等于0,
对于B:“若(a+b)c=ac+bc”类推出“(a•b)c=ac•bc”,类推的结果不符合乘法的运算性质,故错误,
对于C:“(ab)n=anbn”类推出“(a+b)n=an+bn”是错误的,如(1+1)2=12+12
对于D:将乘法类推除法,即由“(a+b)c=ac+bc”类推出“$\frac{a+b}{c}$=$\frac{a}{c}$+$\frac{b}{c}$  (c≠0)”是正确的,
故选D.

点评 归纳推理与类比推理不一定正确,我们在进行类比推理时,一定要注意对结论进行进一步的论证,如果要证明一个结论是正确的,要经过严密的论证,但要证明一个结论是错误的,只需要举出一个反例.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知几何体E-ABCD如图所示,其中四边形ABCD为矩形,AB=2,AD=$\sqrt{3}$,△ABE为等边三角形,平面ABCD⊥平面ABE,点F为棱BE的中点,
(1)求证:BE⊥平面AFD; 
(2)求四面体D-AFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)在定义域D内某区间I上是增函数,而F(x)=$\frac{f(x)}{x}$在I上是减函数,则称y=f(x)在I上是“弱增函数”.
(1)请分别判断f(x)=x+4,g(x)=x2+4x+2在x∈(1,2)是否是“弱增函数”,
并简要说明理由;
(2)若函数h(x)=x2+(sinθ-$\frac{1}{2}$)x+b(θ、b是常数)
(i)若θ∈[{0,$\frac{π}{2}}$],x∈[0,$\frac{1}{4}}$]求h(x)的最小值.(用θ、b表示);
(ii)在x∈(0,1]上是“弱增函数”,试探讨θ及正数b应满足的条件,并用单调性的定义证明..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线y=4x+8与两坐标轴所围成的三角形的面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,E是PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽子3个,肉粽子2个,白粽子5个,这三种粽子的外观完全相同,从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设ξ表示取到的豆沙粽子个数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(1-i)2016+(1+i)2016的值是(  )
A.21008B.21009C.0D.22016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x的不等式mx2-(m+2)x+m+1>0解集为R,则实数m的取值范围是(  )
A.m>$\frac{2\sqrt{3}}{3}$或m<-$\frac{2\sqrt{3}}{3}$B.m<-$\frac{2\sqrt{3}}{3}$或m>0C.m>$\frac{2\sqrt{3}}{3}$D.m<-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足a1=0,且$\frac{1}{{1-{a_{n+1}}}}$-$\frac{1}{{1-{a_n}}}$=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{{1-{a_{n+1}}}}{n}$,求{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案