精英家教网 > 高中数学 > 题目详情
5.设等差数列{an}的公差d不为0,若对于任意i∈N*,行列式$|\begin{array}{l}{{a}_{i}}&{{a}_{i+1}}\\{{a}_{i+2}}&{{a}_{i+3}}\end{array}|$的值恒等于公差d,则d=$-\frac{1}{2}$.

分析 利用行列式的性质、等差数列的通项公式即可得出.

解答 解:∵行列式$|\begin{array}{l}{{a}_{i}}&{{a}_{i+1}}\\{{a}_{i+2}}&{{a}_{i+3}}\end{array}|$的值恒等于公差d,
∴d=aiai+3-ai+1ai+2=ai(ai+3d)-(ai+d)(ai+2d)=-2d2,d≠0,
解得d=-$\frac{1}{2}$.
故答案为:$-\frac{1}{2}$.

点评 本题考查了行列式的性质、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\frac{lnx}{1+x}-lnx$在x=x0处取得最大值,给出下列5个式子:
①f(x0)<x0,②f(x0)=x0,③f(x0)>x0,④$f({x_0})<\frac{1}{2}$,⑤$f({x_0})>\frac{1}{2}$.则其中正确式子的序号为(  )
A.①和④B.②和④C.②和⑤D.③和⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|2x-1|-|x+1|.
(1)求不等式f(x)≤0的解集;
(2)若f(x)>a-2|x+1|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z满足 z-1=(z+1)i,则z的值是(  )
A.1+iB.1-iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若复数z满足i•z=2i-z(i是虚数单位),则z=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若干个平面把一个长方体分成k个四面体,这些四面体的体积之和等于长方体的体积,则k的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列命题中,
①若lgx>lgy,则$\sqrt{x}$>$\sqrt{y}$;
②若|a|+|b|=|a+b|,则ab≥0;
③对△ABC,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$,则△ABC是等边三角形;
④若a=1,则函数f(x)=(x-a)2在(1,+∞)上为增函数.
其中否命题与逆否命题均为真命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中正确命题的个数是(  )
(1)对分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握越大;
(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
(3)若a>0,b>0且$\frac{2}{a}$+$\frac{1}{b}$=1,则a+b≥4;
(4)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线y=m与函数y=x2-3|x-2|-5x+1的图象有3个交点,则m的值为-5或-6.

查看答案和解析>>

同步练习册答案