精英家教网 > 高中数学 > 题目详情
5.已知全集U={0,1,2,3,4},集合A={0,2,4},B={1,2,3},则A∩(∁UB)为(  )
A.{0,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}

分析 根据全集U、集合B和补集的运算求出∁UB,再由交集的运算求出A∩∁UB即可.

解答 解:∵全集U={0,1,2,3,4},B={1,2,3},
∴∁UB={0,4},
∵集合A={0,2,4},
∴A∩(∁UB)={0,4},
故选:A.

点评 本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的运算是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足$\left\{\begin{array}{l}{2x+y≥4}\\{4x-y≤8}\\{x-y≥-1}\end{array}\right.$,则x2+y2-2x的取值范围是[-$\frac{1}{5}$,24].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,短轴的两个端点分别为B1,B2,且离心率e=$\frac{2}{3}$,若四边形F1B1F2B2的内切圆面积为$\frac{20π}{9}$,则椭圆C的方程为(  )
A.$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{36}$$+\frac{{y}^{2}}{20}$=1C.$\frac{{x}^{2}}{6}$$+\frac{3{y}^{2}}{10}$=1D.$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,a1+a2+…+a5=27,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{5}}$=3,则a3=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x|2x+a|,a∈R是奇函数,则a=0,f(-2)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知钝角△ABC的面积为$\frac{1}{2}$,AB=1,BC=$\sqrt{2}$,则角B=$\frac{3π}{4}$,AC=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,D为AC的中点,∠ABC=90°,AA1=AB=2,BC=3.
(1)求证:AB1∥平面BC1D;
(2)求三棱锥D-BC1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}和{bn}的通项公式分别是${a_n}=\frac{{a{n^2}+3}}{{b{n^2}-2n+2}}$,${b_n}=b-a{(\frac{1}{3})^{n-1}}$,其中a、b是实常数,若$\lim_{n→∞}{a_n}=3,\lim_{n→∞}{b_n}=-\frac{1}{4}$,且a,b,c成等差数列,则c的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知四边形ABCD的对角线相交于一点,$\overrightarrow{AC}$=(1,$\sqrt{3}$),$\overrightarrow{BD}$=(-$\sqrt{3}$,1),则$\overrightarrow{AB}$•$\overrightarrow{CD}$的取值范围是(  )
A.(0,2)B.(0,4]C.[-2,0)D.[-4,0)

查看答案和解析>>

同步练习册答案