精英家教网 > 高中数学 > 题目详情
12.如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某几何体的三视图(其中虚线弧与实线弧都是以正视图正方形中心为圆心的四分之一圆弧),则该几何体的体积为(  )
A.$6+\frac{π}{4}$B.$6+\frac{π}{2}$C.$6-\frac{π}{4}$D.$6-\frac{π}{2}$

分析 几何体为一个长方体,两个小正方体和两个$\frac{1}{4}$圆柱的组合体.

解答 解:由三视图可知几何体下部分为长方体,上部分为交错放置的两个小正方体和两个$\frac{1}{4}$圆柱.
长方体的棱长分别为2,2,1,小正方体的棱长为1,圆柱体的底面半径为1,高为1.
故几何体的体积V=2×2×1+2×13+$\frac{1}{4}π×{1}^{2}×1×2$=6+$\frac{π}{2}$.
故选B.

点评 本题考查了常见几何体的三视图和结构特征,体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)的导函数f′(x)=a(x-1)(x-a),若f(x)在x=a处取得极大值,则实数a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则其表面积为(  )
A.$\frac{17π}{2}$B.C.$\frac{19π}{2}$D.10π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆$\frac{{x}^{2}}{10-m}$+$\frac{{y}^{2}}{m-2}$=1,焦点在x轴上,若焦距为4,则m等于(  )
A.4B.5C.4或8D.5或7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知椭圆E:$\frac{x^2}{16}+\frac{y^2}{12}$=1和抛物线C:y2=8x,A,B是C的准线与E的两个交点,则|AB|=(  )
A..3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知[x]表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2.则下列结论正确的个数是(  )
①[x+y]≥[x]+[y];②[x-y]≤[x]-[y];③[xy]≤[x][y];④$\frac{[x]}{[y]}≤[\frac{x}{y}]$([y]≠0).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,右焦点为($\sqrt{2}$,0).
(1)求椭圆C的方程;
(2)若过原点O作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值;
(3)在(2)的条件下,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若数列{an}中,a1=1,an+1=2an+1(n∈N*),则数列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$的各项和为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=$\frac{3}{7}$相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线l:x=2$\sqrt{2}$与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.

查看答案和解析>>

同步练习册答案