精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)的定义域为[-1,5],部分对应值如表:
x-10245
f(x)12021
f(x)的导函数y=f′(x)的图象如图所示,则f(x)的极小值为0.

分析 由导数图象可知导函数的符号,从而可判断函数的单调性,得函数的极值即可.

解答 解:由导数图象可知,当-1<x<0或2<x<4时,f'(x)>0,函数单调递增,
当0<x<2或4<x<5,f'(x)<0,函数单调递减,
所以当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,
当x=2时,函数取得极小值f(2)=0,
所以f(x)的极小值为0,
故答案为:0.

点评 本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}的首项a1=1,公比为q,试就q的不同取值情况,讨论二元一次方程组$\left\{\begin{array}{l}{a_1}x+{a_3}y=3\\{a_2}x+{a_4}y=-2\end{array}\right.$何时无解,何时有无穷多解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知三棱柱ABC-A1B1C1中,AA1=B1C=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.
(1)求证:AB⊥平面AB1C;  
(2)求多面体CAA1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}是首项为1的等差数列,{bn}是首项为2且各项均为正数的等比数列,且满足a2+a3=b3,5+b2=3a2
(1)求{an}和{bn}的通项公式;
(2)设cn=(-1)nanan+1,求数列{cn}的前2n项和T2n
(3)设{bn}的前n项和为Sn,是否存在正整数n,t,使得$\frac{{S}_{n}-t{b}_{n}}{{S}_{n+1}-t{b}_{n+1}}$<$\frac{1}{16}$成立?若存在,求出正整数n,t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题:“?x∈R,x2+mx+2≤0”为假命题,是命题|m-1|<2的(  )
A.充分不必要条件B.必要非充分条件C.充要条件D.都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.抛物线顶点在原点,以x轴为对称轴,过焦点且垂直于对称轴的弦长为8,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx+$\frac{1}{x}$,曲线f(x)在点(1,f(1))处的切线平行于x轴.
(1)求f(x)的最小值;
(2)比较f(x)与$f(\frac{1}{x})$的大小;
(3)证明:x>0时,xexlnx+ex>x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“存在x0≥0,${2}^{{x}_{0}}$≤0”的否定是(  )
A.不存在x0≥0,${2}^{{x}_{0}}$>0B.存在x0≥0,${2}^{{x}_{0}}$≥0
C.对任意的x0≥0,2x≤0D.对任意的x0≥0,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.北京某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有
且只有两个年级选择甲博物馆的方案有(  )
A.6 2×A 5 4B.6 2×5 4C.6 2×A 5 4D.6 2×5 4

查看答案和解析>>

同步练习册答案