分析 根据等差数列的前n项和,结合题意得出$\left\{\begin{array}{l}{{a}_{10}>0}\\{{a}_{11}<0}\end{array}\right.$,解得-$\frac{{a}_{1}}{9}$<d<-$\frac{{a}_{1}}{10}$;化$\frac{{S}_{12}}{{a}_{12}}$=6(1+$\frac{{a}_{1}}{{a}_{1}+11d}$),根据d的取值范围求出$\frac{{a}_{1}}{{a}_{1}+11d}$的取值范围,即可得出结论.
解答 解:Sn为等差数列{an}的前n项和,a1>0,当且仅当n=10时Sn最大,
∴$\left\{\begin{array}{l}{{a}_{10}>0}\\{{a}_{11}<0}\end{array}\right.$,即$\left\{\begin{array}{l}{{a}_{1}+9d>0}\\{{a}_{1}+10d<0}\end{array}\right.$,
解得-$\frac{{a}_{1}}{9}$<d<-$\frac{{a}_{1}}{10}$;
∴$\frac{{S}_{12}}{{a}_{12}}$=$\frac{1{2a}_{1}+\frac{12×11}{2}×d}{{a}_{1}+11d}$=6×$\frac{{2a}_{1}+11d}{{a}_{1}+11d}$=6(1+$\frac{{a}_{1}}{{a}_{1}+11d}$),
又-$\frac{{a}_{1}}{9}$<d<-$\frac{{a}_{1}}{10}$,
∴-$\frac{{2a}_{1}}{9}$<a1+11d<-$\frac{{a}_{1}}{10}$,
∴-10<$\frac{{a}_{1}}{{a}_{1}+11d}$$<-\frac{9}{2}$,
∴-9<1+$\frac{{a}_{1}}{{a}_{1}+11d}$<-$\frac{7}{2}$,
∴-54<6(1+$\frac{{a}_{1}}{{a}_{1}+11d}$)<-21,
∴$\frac{{S}_{12}}{{a}_{12}}$的取值范围是(-54,-21).
故答案为:(-54,-21).
点评 本题考查了等差数列的前n项和公式与通项公式的应用问题,也考查了不等式的解法与应用问题,是综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4+2i | B. | 2+i | C. | 2+2i | D. | 3+i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{5}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a3+15b>b3+15a | B. | a3+15b<b3+15a | C. | b•2a>a•2b | D. | b•2a<a•2b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com