精英家教网 > 高中数学 > 题目详情
18.Sn等差数列{an}的前n项和,a1>0,当且仅当n=10时Sn最大,则$\frac{{S}_{12}}{{a}_{12}}$的取值范围为(-54,-21).

分析 根据等差数列的前n项和,结合题意得出$\left\{\begin{array}{l}{{a}_{10}>0}\\{{a}_{11}<0}\end{array}\right.$,解得-$\frac{{a}_{1}}{9}$<d<-$\frac{{a}_{1}}{10}$;化$\frac{{S}_{12}}{{a}_{12}}$=6(1+$\frac{{a}_{1}}{{a}_{1}+11d}$),根据d的取值范围求出$\frac{{a}_{1}}{{a}_{1}+11d}$的取值范围,即可得出结论.

解答 解:Sn为等差数列{an}的前n项和,a1>0,当且仅当n=10时Sn最大,
∴$\left\{\begin{array}{l}{{a}_{10}>0}\\{{a}_{11}<0}\end{array}\right.$,即$\left\{\begin{array}{l}{{a}_{1}+9d>0}\\{{a}_{1}+10d<0}\end{array}\right.$,
解得-$\frac{{a}_{1}}{9}$<d<-$\frac{{a}_{1}}{10}$;
∴$\frac{{S}_{12}}{{a}_{12}}$=$\frac{1{2a}_{1}+\frac{12×11}{2}×d}{{a}_{1}+11d}$=6×$\frac{{2a}_{1}+11d}{{a}_{1}+11d}$=6(1+$\frac{{a}_{1}}{{a}_{1}+11d}$),
又-$\frac{{a}_{1}}{9}$<d<-$\frac{{a}_{1}}{10}$,
∴-$\frac{{2a}_{1}}{9}$<a1+11d<-$\frac{{a}_{1}}{10}$,
∴-10<$\frac{{a}_{1}}{{a}_{1}+11d}$$<-\frac{9}{2}$,
∴-9<1+$\frac{{a}_{1}}{{a}_{1}+11d}$<-$\frac{7}{2}$,
∴-54<6(1+$\frac{{a}_{1}}{{a}_{1}+11d}$)<-21,
∴$\frac{{S}_{12}}{{a}_{12}}$的取值范围是(-54,-21).
故答案为:(-54,-21).

点评 本题考查了等差数列的前n项和公式与通项公式的应用问题,也考查了不等式的解法与应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.将一条均匀木棍随机折成两段,则其中一段大于另一段三倍的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,向量$\overrightarrow{O{Z_1}},\overrightarrow{O{Z_2}}$所对应的复数分别为Z1,Z2,则Z1•Z2=(  )
A.4+2iB.2+iC.2+2iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a>0,b>0,若$\sqrt{2}$是2a与2b的等比中项,求a2+2b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=3ax2-2(a+b)x+b,a>0,b∈R,0≤x≤1.
(1)若fmax(x)=1,求a2+|b|的取值范围;
(2)求证:|f(x)|≤$\frac{1}{2}$(|a-2b|+a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),直线l:y=2x-2,若直线l平行于双曲线C的一条渐近线且经过C的一个顶点,则双曲线C的焦点到渐近线的距离为(  )
A.1B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a=2bcosA.
(1)求角B的大小;
(2)若a=2,b=$\sqrt{7}$,求c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数a,b满足2<a<b<3,下列不等关系中一定成立的是(  )
A.a3+15b>b3+15aB.a3+15b<b3+15aC.b•2a>a•2bD.b•2a<a•2b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l的方程为ax+2y-3=0,且a∈[-5,4],则直线l的斜率不小于1的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案