精英家教网 > 高中数学 > 题目详情
9.若“x2-x-6>0”是“x<a”的必要不充分条件,则a的最大值为-2.

分析 求出不等式的等价条件,利用充分条件和必要条件的定义即可得到结论.

解答 解:∵x2-x-6>0,
∴x>3或x<-2,
∵“x2-x-6>0”是“x<a”的必要不充分条件,
∴a≤-2,
即a的最大值为-2,
故答案为:-2.

点评 本题主要考查充分条件和必要条件的应用,利用数轴法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列三角函数值的符号判断错误的是(  )
A.sin 165°>0B.cos 280°>0C.tan 170°>0D.tan 310°<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为2,以双曲线C的实轴为直径的圆记为圆O,过点F2作圆O的切线,切点为P,则以F1,F2为焦点,过点P的椭圆T的离心率为(  )
A.$\frac{{\sqrt{5}-\sqrt{3}}}{2}$B.$\sqrt{5}-\sqrt{3}$C.$\frac{{\sqrt{7}-\sqrt{3}}}{4}$D.$\sqrt{7}-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=xlnx+et-a,若对任意的t∈[0,1],f(x)在(0,e)上总有唯一的零点,则a的取值范围是(  )
A.$[e-\frac{1}{e},e)$B.[1,e+1)C.[e,e+1)D.$(e-\frac{1}{e},e+1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设U={0,-1,-2,-3,-4},M={0,-1,-2},N={0,-3,-4},则(∁UM)∩N等于(  )
A.{0}B.{-1,-2}C.{-3,-4}D.{-1,-2,-3,-4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列关系式中,正确的是(  )
A.∅∈{0}B.0⊆{0}C.0∈{0}D.∅={0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右支上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,设∠ABF=θ,θ∈[$\frac{π}{6}$,$\frac{π}{4}$)且$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,则双曲线离心率的最小值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了了解某小区2000户居民月用水量使用情况,通过随机抽样获得了100户居民的月用水量.如图是调查结果的频率分布直方图.
(1)做出样本数据的频率分布折线图;
(2)并根据频率直方图估计某小区2000户居民月用水量使用大于3的户数;
(3)利用频率分布直方图估计该样本的众数和中位数(保留到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设S(n),T(n)分别为等差数列{an},{bn}的前n项和,且$\frac{S(n)}{T(n)}$=$\frac{3n+2}{4n+5}$.设点A是直线BC外一点,点P是直线BC上一点,且$\overrightarrow{AP}$=$\frac{{{a_1}+{a_4}}}{b_3}$•$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$,则实数λ的值为$-\frac{3}{25}$.

查看答案和解析>>

同步练习册答案