精英家教网 > 高中数学 > 题目详情
19.设S(n),T(n)分别为等差数列{an},{bn}的前n项和,且$\frac{S(n)}{T(n)}$=$\frac{3n+2}{4n+5}$.设点A是直线BC外一点,点P是直线BC上一点,且$\overrightarrow{AP}$=$\frac{{{a_1}+{a_4}}}{b_3}$•$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$,则实数λ的值为$-\frac{3}{25}$.

分析 由等差数列的通项公式可知:$\frac{S(n)}{T(n)}$=$\frac{3n+2}{4n+5}$=$\frac{\frac{(3n+2)n}{2}}{\frac{(3n+2)n}{2}}$,分别求得S(n)=$\frac{(3n+2)n}{2}$,T(n)=$\frac{(4n+5)n}{2}$,由平面向量的基本定理可知:$\frac{{a}_{1}+{a}_{4}}{{b}_{3}}$+λ=1,分别求得a1+a4和b3,求得$\frac{{a}_{1}+{a}_{4}}{{b}_{3}}$=$\frac{28}{25}$,即可求得实数λ的值.

解答 解:S(n),T(n)分别为等差数列{an},{bn}的前n项和,
由等差数列前n项和公式可知:$\frac{S(n)}{T(n)}$=$\frac{3n+2}{4n+5}$=$\frac{\frac{(3n+2)n}{2}}{\frac{(3n+2)n}{2}}$,
∴S(n)=$\frac{(3n+2)n}{2}$,T(n)=$\frac{(4n+5)n}{2}$,
∵P是直线BC上一点,
∴$\overrightarrow{BP}$=k$\overrightarrow{BC}$,k∈R,
∴$\overrightarrow{AP}$-$\overrightarrow{AB}$=k($\overrightarrow{AC}$-$\overrightarrow{AB}$),
∴$\overrightarrow{AP}$=(1-k)$\overrightarrow{AB}$+k$\overrightarrow{AC}$,
∵$\overrightarrow{AP}$=$\frac{{{a_1}+{a_4}}}{b_3}$•$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$,
∴$\frac{{a}_{1}+{a}_{4}}{{b}_{3}}$+λ=1,
由S4=$\frac{4×({a}_{1}+{a}_{4})}{2}$=2(a1+a4),
∴a1+a4=$\frac{1}{2}$×S4=14,
b3=$\frac{1}{2}$×(b1+b5)=$\frac{1}{2}$×$\frac{2{T}_{5}}{5}$=$\frac{25}{2}$,
∴$\frac{{a}_{1}+{a}_{4}}{{b}_{3}}$=$\frac{28}{25}$,
λ=1-$\frac{28}{25}$=$-\frac{3}{25}$,
故答案为:$-\frac{3}{25}$.

点评 本题考查等差数列的性质,等差数列前n项公式,考查平面向量的基本定理及其意义,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若“x2-x-6>0”是“x<a”的必要不充分条件,则a的最大值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知扇形的圆心角是α,半径为R,弧长为l.
(1)若α=60°,R=10cm,求扇形的弧长l;
(2)若扇形的周长为20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大;
(3)若α=$\frac{π}{3}$,R=2cm,求扇形的弧所在的弓形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.计算机执行如图的程序段后,输出的结果是(  )
A.2 015,2 013B.2 013,2 015C.2 015,2 015D.2 015,2 014

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在正项等比数列{an}中,a5a4a2a1=16,则a1+a5的最小值是(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1+x),那么f(-$\frac{9}{2}$)=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AE=$\frac{1}{2}$AD=1,PA=2.
(1)证明:平面PAB⊥平面PBD;
( 2 )求三棱锥E-PDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.点(x,y)经坐标变换公式Г:$\left\{\begin{array}{l}{x′=ax+b}\\{y′=cy+d}\end{array}\right.$变为点(x′,y′),若曲线y=5sin4x+1经变换公式Г变为曲线y=4sin(5x+$\frac{π}{4}$),求a,b,c,d值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程x2-(m+2)x+1=0有两个正根,则m的取值范围为{m|m≥0}.

查看答案和解析>>

同步练习册答案