精英家教网 > 高中数学 > 题目详情
10.已知扇形的圆心角是α,半径为R,弧长为l.
(1)若α=60°,R=10cm,求扇形的弧长l;
(2)若扇形的周长为20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大;
(3)若α=$\frac{π}{3}$,R=2cm,求扇形的弧所在的弓形的面积.

分析 (1)利用弧长公式即可计算得解.
(2)由已知得l+2R=20,可求S=-(R-5)2+25,利用二次函数的图象即可得解.
(3)由已知利用扇形面积,三角形面积公式即可得解弓形的面积.

解答 解:(1)l=10×$\frac{π}{3}$=$\frac{10π}{3}$(cm).
(2)由已知得:l+2R=20,
所以S=$\frac{1}{2}$lR=$\frac{1}{2}$(20-2R)R=-(R-5)2+25.
所以R=5时,S取得最大值25,此时l=10,α=2rad.
(3)设弓形面积为S,由题知l=$\frac{2π}{3}$cm,
S=S-S=$\frac{1}{2}$×$\frac{2π}{3}$×2-$\frac{1}{2}$×22×sin $\frac{π}{3}$=$\frac{2π}{3}$-$\sqrt{3}$(cm2).

点评 本题主要考查了弧长公式,二次函数的图象和性质,扇形面积,三角形面积公式的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图,已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为2,以双曲线C的实轴为直径的圆记为圆O,过点F2作圆O的切线,切点为P,则以F1,F2为焦点,过点P的椭圆T的离心率为(  )
A.$\frac{{\sqrt{5}-\sqrt{3}}}{2}$B.$\sqrt{5}-\sqrt{3}$C.$\frac{{\sqrt{7}-\sqrt{3}}}{4}$D.$\sqrt{7}-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右支上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,设∠ABF=θ,θ∈[$\frac{π}{6}$,$\frac{π}{4}$)且$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,则双曲线离心率的最小值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了了解某小区2000户居民月用水量使用情况,通过随机抽样获得了100户居民的月用水量.如图是调查结果的频率分布直方图.
(1)做出样本数据的频率分布折线图;
(2)并根据频率直方图估计某小区2000户居民月用水量使用大于3的户数;
(3)利用频率分布直方图估计该样本的众数和中位数(保留到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC的三个内角为A,B,C,若函数f(x)=x2-xcosA•cosB-cos2$\frac{C}{2}$有一零点为1,则△ABC一定是(  )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+2x-6.证明:函数f(x)有且只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ln(x+1)-$\frac{ax}{x+2}$.
(1)讨论f(x)的单调性;
(2)当x>0时,f(x)>0恒成立,求a的取值范围;
(3)证明:n+1>e${\;}^{\frac{2}{3}+\frac{2}{5}+…+\frac{2}{2n+1}}}$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设S(n),T(n)分别为等差数列{an},{bn}的前n项和,且$\frac{S(n)}{T(n)}$=$\frac{3n+2}{4n+5}$.设点A是直线BC外一点,点P是直线BC上一点,且$\overrightarrow{AP}$=$\frac{{{a_1}+{a_4}}}{b_3}$•$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$,则实数λ的值为$-\frac{3}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若$\overrightarrow{a}$=(1,2,0),$\overrightarrow{b}$=(-2,1,x),且以$\overrightarrow{a}$,$\overrightarrow{b}$为邻边的平行四边形的面积为3$\sqrt{5}$,则实数x的值为±2.

查看答案和解析>>

同步练习册答案