分析 (1)利用弧长公式即可计算得解.
(2)由已知得l+2R=20,可求S=-(R-5)2+25,利用二次函数的图象即可得解.
(3)由已知利用扇形面积,三角形面积公式即可得解弓形的面积.
解答 解:(1)l=10×$\frac{π}{3}$=$\frac{10π}{3}$(cm).
(2)由已知得:l+2R=20,
所以S=$\frac{1}{2}$lR=$\frac{1}{2}$(20-2R)R=-(R-5)2+25.
所以R=5时,S取得最大值25,此时l=10,α=2rad.
(3)设弓形面积为S弓,由题知l=$\frac{2π}{3}$cm,
S弓=S扇-S△=$\frac{1}{2}$×$\frac{2π}{3}$×2-$\frac{1}{2}$×22×sin $\frac{π}{3}$=$\frac{2π}{3}$-$\sqrt{3}$(cm2).
点评 本题主要考查了弧长公式,二次函数的图象和性质,扇形面积,三角形面积公式的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}-\sqrt{3}}}{2}$ | B. | $\sqrt{5}-\sqrt{3}$ | C. | $\frac{{\sqrt{7}-\sqrt{3}}}{4}$ | D. | $\sqrt{7}-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}+1$ | C. | $\sqrt{3}$ | D. | $\sqrt{3}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | C. | 锐角三角形 | D. | 钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com