精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(x-
13π
2
)(x∈R),下面结论错误的是(  )
A、函数f(x)的最小正周期为2π
B、函数f(x)在区间[0,
π
2
]上是增函数
C、函数f(x)的图象关于直线x=0对称
D、函数f(x)是奇函数
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件利用诱导公式可得f(x)=-cosx(x∈R),可得函数的周期为
1
=2π,且是偶函数,从而得出结论
解答: 解:对于函数f(x)=sin(x-
13π
2
)=sin(x-
π
2
)=-cosx(x∈R),
故函数的周期为
1
=2π,且是偶函数,
故D错误,
故选:D.
点评:本题主要考查诱导公式、余弦函数的周期性和奇偶性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,BD1与A1D所成的角为α1,AB1与BC1所成的角为α2,AA1与BD1所成的角为α3,则有(  )
A、α3<α2<α1
B、α2<α3<α1
C、α2<α1<α3
D、α3<α1<α2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y均为正数且x+2y=xy,则(  )
A、x+2y+
9
xy
有最小值6
B、x+2y+
9
xy
有最小值10
C、x+2y+
9
xy-7
有最小值13
D、x+2y+
9
xy-7
有最小值17

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径为(  )
A、
21
B、2
3
C、
21
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ex (x≥0)
-2x(x<0)
,则关于x的方程f[f(x)]+k=0有四个结论:
①存在实数k,使方程没有实根
②存在实数k,使方程恰有1个实根
③存在实数k,使方程恰有2个实根
④存在实数k,使方程恰有3个实根
则正确结论的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设x、y满足约束条件
x+y≤1
y≥x
x≥0
,则z=2x-y的最大值为(  )
A、0
B、2
C、3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
2+x
1-x
>0的解集时间(  )
A、{x|x>1或x<-2}
B、{x|x>2或x<-1}
C、{x|-2<x<1}
D、{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右顶点分别为A,B,点P是双曲线C上不同于顶点的任意一点,若直线PA、PB的斜率之积为
1
2

(Ⅰ)求双曲线C的离心率e;
(Ⅱ)若过点P作斜率为k(k≠±
b
a
)的直线l,使得l与双曲线C有且仅有一个公共点,记直线PF1,PF2的斜率分别为k1,k2,问是否存在实数λ使得
1
k1
+
1
k2
=λk.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且焦点F(2,0).
(1)求抛物线C的标准方程;
(2)直线l过焦点F与抛物线C相交与M,N两点,且|MN|=16,求直线l的方程.

查看答案和解析>>

同步练习册答案