精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是: (t是参数).
(1)若直线l与曲线C相交于A、B两点,且|AB|= ,试求实数m值.
(2)设M(x,y)为曲线C上任意一点,求x+2y的取值范围.

【答案】
(1)

解:∵ρ=4cosθ,∴ρ2=4ρcosθ,∴曲线C的直角坐标方程为:x2+y2﹣4x=0,即(x﹣2)2+y2=4.

,∴直线l的直角坐标方程为:y=x﹣m.即x﹣y﹣m=0.

∵|AB|= ,∴圆心到直线l的距离(弦心距)d=

,解得m=1或m=3


(2)

解:曲线C的参数方程为: (θ为参数),

∵M(x,y)为曲线C上任意一点,∴x+2y=2+2cosθ+4sinθ=2+2 sin(θ+φ).

∴x+2y的取值范围是[2﹣2 ,2+2 ]


【解析】(1)求出圆的圆心和半径,根据垂径定理列出方程解出m;(2)求出曲线C的参数方程,将参数方程代入x+2y得到关于参数得三角函数,使用三角函数的性质得出最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为(
A.
B.3
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设n∈N* , n≥3,k∈N*
(1)求值: ①kCnk﹣nCn1k1
(k≥2);
(2)化简:12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:
(Ⅰ)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数;
(Ⅱ)若从学习时间不少于4小时的学生中选取4人,设选到的男生人数为X,求随机变量X的分布列;
(Ⅲ)试比较男生学习时间的方差 与女生学习时间方差 的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC 中,角A、B、C所对的边分别为a、b、c,且cosA=
①求 的值.
②若 ,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为 .若a2sinC=4sinA,(a+c)2=12+b2 , 则用“三斜求积”公式求得△ABC的面积为(
A.
B.2
C.3
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B两点,且点A的横坐标为2.过劣弧AB上动点P(x0 , y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1 , l2 , l1与l2相交于点M.
(Ⅰ)求p的值;
(Ⅱ)求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于

查看答案和解析>>

同步练习册答案