13£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÇÒÓÒ½¹µãF2µÄ×ø±êΪ£¨$\sqrt{3}$£¬0£©£¬µã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©ÔÚÍÖÔ²CÉÏ£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÔÚÍÖÔ²CÉÏÈÎȡһµãP£¬µãQÔÚPOµÄÑÓ³¤ÏßÉÏ£¬ÇÒ$\frac{|OQ|}{|OP|}$=2£®
£¨1£©µ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬ÇóµãQÐγɵĹ켣EµÄ·½³Ì£»
£¨2£©Èô¹ýµãPµÄÖ±Ïßl£ºy=x+m½»£¨1£©ÖеÄÇúÏßEÓÚA£¬BÁ½µã£¬Çó¡÷ABQÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²µÄ½¹µã×ø±êºÍµãÔÚÍÖÔ²CÉÏ£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨¢ò£©£¨1£©ÉèP£¨2cos¦È£¬sin¦È£©£¬ÔòQ£¨4cos¦È£¬2sin¦È£©£¬0¡Ü¦È£¼2¦Ð£¬ÓÉ´ËÄÜÇó³öµ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬ÇóµãQÐγɵĹ켣EµÄ·½³Ì£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ5x2+8mx+4m2-16=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ£¬½áºÏÒÑÖªÄÜÇó³ö¡÷ABQÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©¡ßF1¡¢F2·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬
ÇÒÓÒ½¹µãF2µÄ×ø±êΪ£¨$\sqrt{3}$£¬0£©£¬µã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©ÔÚÍÖÔ²CÉÏ£¬
¡à$\left\{\begin{array}{l}{c=\sqrt{3}}\\{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2£¬b=1£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£®
£¨¢ò£©£¨1£©¡ßÔÚÍÖÔ²CÉÏÈÎȡһµãP£¬µãQÔÚPOµÄÑÓ³¤ÏßÉÏ£¬ÇÒ$\frac{|OQ|}{|OP|}$=2£¬
¡àÉèP£¨2cos¦È£¬sin¦È£©£¬ÔòQ£¨4cos¦È£¬2sin¦È£©£¬0¡Ü¦È£¼2¦Ð£¬
¡àµ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬ÇóµãQÐγɵĹ켣EµÄ·½³Ì£º
$\left\{\begin{array}{l}{x=4cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬0¡Ü¦È£¼2¦Ð£¬
¡àµãEµÄÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬µÃ5x2+8mx+4m2-16=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=-\frac{8m}{5}$£¬${x}_{1}{x}_{2}=\frac{4{m}^{2}-16}{5}$£¬
¡÷=64m2-80m2+320£¾0£¬½âµÃ-2$\sqrt{5}£¼m£¼2\sqrt{5}$£¬
|AB|=$\sqrt{2[£¨-\frac{8m}{5}£©^{2}-4¡Á\frac{4{m}^{2}-16}{5}]}$=$\frac{4}{5}\sqrt{10-{m}^{2}}$£¬
ÉèQµ½Ö±Ïßy=x+mµÄ¾àÀëd=$\frac{|{x}_{Q}-{y}_{Q}+m|}{\sqrt{2}}$£¬
¡ßxQ=2xP£¬yQ=2yP£¬=2£¨xP+m£©£¬
Ôò$\frac{|2{x}_{P}-2{x}_{P}-2m+m|}{\sqrt{2}}$=$\frac{|m|}{\sqrt{2}}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=x+n}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ5x2+8mx+4m2-4=0£¬
¡÷=80-16m2¡Ý0£¬¼´m2¡Ü5£¬
¡à${S}_{¡÷ABQ}=\frac{1}{2}d•|AB|$=$\frac{1}{2}¡Á\frac{|m|}{\sqrt{2}}¡Á\sqrt{2}¡Á\frac{\sqrt{320-16{m}^{2}}}{5}$
=$\frac{2}{5}\sqrt{-{m}^{4}+20{m}^{2}}$=$\frac{2}{5}\sqrt{-£¨{m}^{2}-10£©^{2}+100}$£¬
µ±m2=5ʱ£¬S¡÷ABQ×î´ó£¬ÇÒS¡÷ABQ×î´óֵΪ2$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èçͼ£¬ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ¶¥µã·Ö±ðΪA1£¬A2£¬É϶¥µãΪB£¬´ÓÍÖÔ²ÉÏÒ»µãPÏòxÖá×÷´¹Ïߣ¬´¹×ãǡΪ×ó½¹µãF£¬ÇÒA2B¡ÎOP£¬|FA2|=$\sqrt{10}$+$\sqrt{5}$£¬¹ýA2×÷xÖáµÄ´¹Ïßl£¬µãMÊÇlÉÏÈÎÒâÒ»µã£¬A1M½»ÍÖÔ²ÓÚµãN£¬Ôò$\overrightarrow{OM}$•$\overrightarrow{ON}$=£¨¡¡¡¡£©
A£®10B£®5
C£®15D£®ËæµãMÔÚÖ±ÏßlÉϵÄλÖñ仯¶ø±ä»¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ä³Ð£µÄÒ»¸öÉç»áʵ¼ùµ÷²éС×飬ÔÚ¶Ô¸ÃУѧÉúµÄÁ¼ºÃ¡°ÓÃÑÛϰ¹ß¡±µÄµ÷²éÖУ¬Ëæ»ú·¢·ÅÁË120·ÖÎÊ¾í£®¶ÔÊջصÄ100·ÝÓÐЧÎÊ¾í½øÐÐͳ¼Æ£¬µÃµ½Èç2¡Á2ÏÂÁÐÁª±í£º
×ö²»µ½¿ÆÑ§ÓÃÑÛÄÜ×öµ½¿ÆÑ§ÓÃÑۺϼÆ
ÄÐ451055
Ů301545
ºÏ¼Æ7525100
£¨1£©ÏÖ°´Å®ÉúÊÇ·ñÄÜ×öµ½¿ÆÑ§ÓÃÑÛ½øÐзֲ㣬´Ó45·ÝÅ®ÉúÎʾíÖгéÈ¡ÁË6·ÝÎÊ¾í£¬´ÓÕâ6·ÝÎʾíÖÐÔÙËæ»ú³éÈ¡3·Ý£¬²¢¼ÇÆäÖÐÄÜ×öµ½¿ÆÑ§ÓÃÑÛµÄÎʾíµÄ·ÝÊýX£¬ÊÔÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨2£©ÈôÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ýPµÄǰÌáÏÂÈÏΪÁ¼ºÃ¡°ÓÃÑÛϰ¹ß¡±ÓëÐÔ±ðÓйأ¬ÄÇô¸ù¾ÝÁÙ½çÖµ±í£¬×ȷµÄPµÄֵӦΪ¶àÉÙ£¿Çë˵Ã÷ÀíÓÉ£®
¸½£º¶ÀÁ¢ÐÔ¼ìÑéͳ¼ÆÁ¿${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
¶ÀÁ¢ÐÔ¼ìÑéÁÙ½çÖµ±í£º
P£¨K2¡Ýk0£©0.250.150.100.050.025
k01.3232.0722.7063.8405.024

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈôÖ±Ïß3x+£¨a+1£©y-1=0ÓëÖ±Ïßax-2y+1=0»¥Ïà´¹Ö±£¬£¨x+a£©£¨1-$\frac{a}{x}$£©4Õ¹¿ªÊ½µÄ³£ÊýÏîΪ-6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1µÄÁ½½¹µã·Ö±ðΪF1£¬F2£¬¹ýF1µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬Ôò¡÷ABF2µÄÖܳ¤Îª8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÖ±Ïßl£º£¨2+m£©x+£¨1-2m£©y+4-3m=0£®
£¨1£©ÇóÖ¤£º²»ÂÛmΪºÎʵÊý£¬Ö±Ïßlºã¹ýÒ»¶¨µãM£»
£¨2£©¹ý¶¨µãM×÷Ò»ÌõÖ±Ïßl1£¬Ê¹¼ÐÔÚÁ½×ø±êÖáÖ®¼äµÄÏ߶α»Mµãƽ·Ö£¬ÇóÖ±Ïßl1µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Éèf¡ä£¨x£©Îªº¯Êýf£¨x£©µÄµ¼º¯Êý£¬ÒÑÖªx2f¡ä£¨x£©+xf£¨x£©=lnx£¬f£¨1£©=$\frac{1}{2}$£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«´óÖµ$\frac{1}{2}$B£®f£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓм«Ð¡Öµ$\frac{1}{2}$
C£®f£¨x£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔöD£®f£¨x£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝ¼õ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªF1£¬F2ΪÍÖÔ²${C_1}£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×ó¡¢ÓÒ½¹µã£¬F2ÔÚÒÔ$Q£¨\sqrt{2}£¬1£©$ΪԲÐÄ£¬1Ϊ°ë¾¶µÄÔ²C2ÉÏ£¬ÇÒ|QF1|+|QF2|=2a£®
£¨¢ñ£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨¢ò£©¹ýµãP£¨0£¬1£©µÄÖ±Ïßl1½»ÍÖÔ²C1ÓÚA£¬BÁ½µã£¬¹ýPÓël1´¹Ö±µÄÖ±Ïßl2½»Ô²C2ÓÚC£¬DÁ½µã£¬MΪÏß¶ÎCDÖе㣬Çó¡÷MABÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®²»µÈʽ$\frac{x+1}{x-3}$¡Ý0µÄ½â¼¯ÊÇ{x|x£¾3»òx¡Ü-1}£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸