精英家教网 > 高中数学 > 题目详情
关于x的方程(x2-1)2-|x2-1|+k=0恰有8个不同的实根,则k的取值范围是
 
考点:根的存在性及根的个数判断,函数的图象与图象变化
专题:函数的性质及应用
分析:将方程根的问题转化成函数图象的问题,画出函数图象,结合图象可得结论.
解答: 解:关于x的方程(x2-1)2-|x2-1|+k
=0,
可化为(x2-1)2-(x2-1)+k=0,
(x≥1或x≤-1)…(1)
或(x2-1)2+(x2-1)+k=0,
(-1<x<1)…(2)
令f(x)=|x2-1|-(x2-1)2
则由题意可得,函数f(x)的图象和
直线y=k有8个交点.
令t=x2-1≥0,则f(x)=|t|-t2=g(t),显然函数g(t)关于变量t是偶函数,
当t=±
1
2
时,f(x)=g(t)取得最大值为
1
4
,此时对应的x值有4个:±
6
2
、±
2
2

显然,当函数f(x)的图象和直线y=k有8个交点时,0<k<
1
4

故答案为:(0,
1
4
)
点评:本题主要考查了分段函数,以及函数与方程的思想,数形结合的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,则S100+S200+S301等于(  )
A、1B、-1C、51D、52

查看答案和解析>>

科目:高中数学 来源: 题型:

若ABCD为正方形,E是CD的中点,则
AB
=
a
AD
=
b
,则
AE
=(  )
A、
1
2
a
+
b
B、
1
2
b
+
a
C、
1
2
a
-
b
D、
1
2
b
-
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥1
x+y≤3
x-2y≤0
,则 z=
(y+x)(y-x)
xy
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(m,1),
b
=(
1
2
3
2
)

(1)若向量
a
与向量
b
平行,求实数m的值;
(2)若向量
a
与向量
b
垂直,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三梭锥P-ABC中,PA⊥底面ABC,PA=AB=2,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC
(1)当D为PB中点时,求AD与平面PAC所成角的正弦值;
(2)是否存在点E使得二面角A-DE-P为直二面角?说明理由,若有,求出PE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+a|x-1|(a∈R),则对不同的实数a,函数f(x)的单调区间的个数有可能的是(  )
A、1个或2个
B、2个或3个
C、3个或4个
D、2个或4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在边长为1的正方形ABCD的一边上取一点E,使AE=
1
4
AD
,过AB的中点F作HF⊥EC于H.
(1)求证:FH=FA;
(2)求EH:HC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆(x-1)2+(y-2)2=5的圆心到直线x-y+a=0的距离为
2
2
,则a的值为(  )
A、-2或2
B、
1
2
C、2或0
D、-2或0

查看答案和解析>>

同步练习册答案