18£®ÔÚ2016Äê6ÔÂÃÀ¹ú¡°ÍÑÅ·¡±¹«Í¶Ç°Ï¦£¬ÎªÁËͳ¼Æ¸Ã¹ú¹«ÃñÊÇ·ñÓС°ÁôÅ·¡±ÒâÔ¸£¬¸Ã¹úijÖÐѧ½ÌѧÐËȤС×éËæ»ú³é²éÁË50Ãû²»Í¬ÄêÁä²ã´ÎµÄ¹«Ãñ£¬µ÷²éͳ¼ÆËûÃÇÊÇÔ޳ɡ°ÁôÅ·¡±»¹ÊÇ·´¶Ô¡°ÁôÅ·¡±£®ÏÖÒѵÃÖª50ÈËÖÐÔ޳ɡ°ÁôÅ·¡±µÄÕ¼60%£¬Í³¼ÆÇé¿öÈç±í£º
ÄêÁä²ã´ÎÔ޳ɡ°ÁôÅ·¡±·´¶Ô¡°ÁôÅ·¡±ºÏ¼Æ
18¡«49Ëê6
50Ëê¼°50ËêÒÔÉÏ10
ºÏ¼Æ50
£¨¢ñ£©Çë²¹³äÍêÕûÉÏÊöÁÐÁª±í£»
£¨¢ò£©ÇëÎÊÊÇ·ñÓÐ97.5%µÄ°ÑÎÕÈÏΪÔ޳ɡ°ÁôÅ·¡±ÓëÄêÁä²ã´ÎÓйأ¿Çë˵Ã÷ÀíÓÉ£®
²Î¿¼¹«Ê½ÓëÊý¾Ý£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d
P£¨K2£¾k£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

·ÖÎö £¨¢ñ£©¸ù¾Ý50ÈËÖÐÔ޳ɡ°ÁôÅ·¡±µÄÕ¼60%£¬¼´¿ÉµÃµ½ÁÐÁª±í£»
£¨¢ò£©ÀûÓù«Ê½ÇóµÃK2£¬ÓëÁÙ½çÖµ±È½Ï£¬¼´¿ÉµÃµ½½áÂÛ

½â´ð ½â£º£¨¢ñ£©ÁÐÁª±íÈçÏ£º

ÄêÁä²ã´ÎÔ޳ɡ°ÁôÅ·¡±·´¶Ô¡°ÁôÅ·¡±ºÏ¼Æ
18¡«49Ëê20626
50Ëê¼°50ËêÒÔÉÏ101424
ºÏ¼Æ302050
£¨¢ò£©K2=$\frac{50¡Á£¨20¡Á14-10¡Á6£©^{2}}{26¡Á24¡Á30¡Á20}$¡Ö6.46£¾5.024£¬
¡àÓÐ97.5%µÄ°ÑÎÕÈÏΪÔ޳ɡ°ÁôÅ·¡±ÓëÄêÁä²ã´ÎÓйأ®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®½Ç¦ÂµÄÖÕ±ßÉÏÓÐÒ»µãP£¨-m£¬m£©£¬ÆäÖÐm¡Ù0£¬Ôòsin¦Â+cos¦ÂµÄֵΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®-$\sqrt{2}$C£®0D£®$\sqrt{2}$»ò-$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ºÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{\frac{2}{x}£¬x¡Ý2}\\{{x}^{2}-3£¬x£¼2}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf£¨x£©=kÓÐÈý¸ö²»µÈµÄʵ¸ù£¬Çó kµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôº¯Êýf£¨x£©=ax2-1£¬aΪһ¸öÕý³£Êý£¬ÇÒf[f£¨-1£©]=-1£¬ÄÇôaµÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®0C£®-1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺f£¨x+2£©=f£¨x£©£¬ÔÚÇø¼ä[-1£¬1£©ÉÏ£¬f£¨x£©=$\left\{{\begin{array}{l}{{4^x}+a£¬}&{-1¡Üx¡Ü0}\\{{x^2}-{{log}_2}x£¬}&{0£¼x£¼1}\end{array}}$£¬Èôf£¨-$\frac{5}{2}$£©-f£¨$\frac{9}{2}$£©=0£¬Ôòf£¨4a£©=£¨¡¡¡¡£©
A£®1B£®-1C£®$\frac{1}{2}$D£®-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¶¨ÒåÔÚ£¨-2£¬2£©ÉϺ¯Êýf£¨x£©Âú×ãf£¨-x£©=f£¨x£©£¬ÇÒf£¨1-a£©-f£¨1-a2£©£¼0£¬Èôf£¨x£©ÔÚ£¨-2£¬0£©ÉÏÊǼõº¯Êý£¬Ôòaȡֵ·¶Î§£¨¡¡¡¡£©
A£®£¨0£¬1£©¡È£¨1£¬$\sqrt{3}$£©B£®£¨-1£¬1£©C£®£¨-$\sqrt{3}$£¬$\sqrt{3}$£©D£®£¨-1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ãݺ¯Êýf£¨x£©=x${\;}^{{m^2}-2m-3}}$£¨m¡ÊZ£©µÄͼÏóÓë×ø±êÖáÎÞ¹«¹²µã£¬ÇÒ¹ØÓÚyÖá¶Ô³Æ£¬ÔòmµÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¼¯ºÏ{1£¬2£¬3£¬4£¬5}µÄ×Ó¼¯¸öÊýΪ32£¬Õæ×Ó¼¯¸öÊýΪ31£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª¦ÁΪµÚÈýÏóÏ޽ǣ¬f£¨¦Á£©=$\frac{sin£¨¦Á-\frac{¦Ð}{2}£©•cos£¨\frac{3¦Ð}{2}+¦Á£©•tan£¨¦Ð-¦Á£©}{tan£¨-¦Á-¦Ð£©•sin£¨-¦Á-¦Ð£©}$£®
¢Ù»¯¼òf£¨¦Á£©£»
¢ÚÈôcos£¨¦Á-$\frac{3¦Ð}{2}$£©=$\frac{1}{5}$£¬Çóf£¨¦Á+$\frac{¦Ð}{6}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸