精英家教网 > 高中数学 > 题目详情

已知是非零向量且满足的夹角是( )

A. B. C. D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图,用5种不同的颜色涂这些正方形,让每个正方形都涂上一种颜色,且相邻的正方形的颜色不同,若颜色可反复使用,则不同的涂色方法有(  )
A.120种B.240种C.320种D.625种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△ABC中,$\frac{AC}{BC}$=$\frac{3}{2}$,B=60°,则sinA=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年辽宁大连十一中高一下学期段考二试数学(文)试卷(解析版) 题型:填空题

已知,应用秦九韶算法计算时的值时,=_____

查看答案和解析>>

科目:高中数学 来源:2015-2016学年辽宁大连十一中高一下学期段考二试数学(文)试卷(解析版) 题型:选择题

函数的值域是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:解答题

选修4-4:坐标系与参数方程

将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线

(1)写出曲线的参数方程;

(2)以坐标原点为极点,轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M为PB的中点,N在BC上,且AN=BN.
(Ⅰ)求证:AB⊥MN;
(Ⅱ)若∠ABC=30°,△NMA的面积为$\frac{\sqrt{15}}{24}$时,求点P到平面NMA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥S-ABCD中,底面ABCD是矩形,SD=DC=2AD,侧棱SD⊥底面ABCD,点E是SC的中点,点F在SB上,且EF⊥SB.
(1)求证:SA∥平面BDE;
(2)求证SB⊥平面DEF;
(3)求二面角C-SB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥O-ABCD中,∠BAD=120°,OA⊥平面ABCD,E为OD的中点,OA=AC=$\frac{1}{2}$AD=2,AC平分∠BAD.
(1)求证:CE∥平面OAB;
(2)求四面体OACE的体积.

查看答案和解析>>

同步练习册答案