精英家教网 > 高中数学 > 题目详情
15.如图,用5种不同的颜色涂这些正方形,让每个正方形都涂上一种颜色,且相邻的正方形的颜色不同,若颜色可反复使用,则不同的涂色方法有(  )
A.120种B.240种C.320种D.625种

分析 本题是一个分步计数问题,首先给最左边一块涂色,有5种结果,再给左边第二块涂色有4种结果,以此类推第三块也有4种结果,第四块也有4种结果,根据分步计数原理得到结果.

解答 解:由题意知本题是一个分步计数问题,
首先给最左边一块涂色,有5种结果,
再给左边第二块涂色有4种结果,
以此类推第三块也有4种结果,
第四块也有4种结果,
∴根据分步计数原理知共有5×4×4×4=320
故选C.

点评 本题考查计数原理的应用,本题解题的关键是看清条件中对于涂色的限制,因此在涂第二块时,要不和第一块同色.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知$\frac{si{n}^{2}θ+4}{cosθ+1}$=2,则(cosθ+3)(sinθ+1)的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:?m∈R,使得函数f(x)=x3+(m-1)x2-2是奇函数,命题q:向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则“$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$”是:“$\overrightarrow{a}$∥$\overrightarrow{b}$”的充要条件,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线y=x2在点P处的切线分别满足下列条件,求点P坐标.
(1)平行于直线y=4x-5;
(2)与x轴成135°的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:方程x2-(3+a)x+3a=0在[-2,2]上有且仅有一解;q:只有一个实数x满足不等式x2-2ax+3a≤0.若“命题p或q“是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设复数z的共轭复数为$\overline{z}$,且4z+2$\overline{z}$=3$\sqrt{3}$+i,ω=sinθ-icosθ,复数z-ω对应复平面内的向量为$\overrightarrow{OM}$,求复数z和|$\overrightarrow{OM}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若sin4α+cos4α=$\frac{5}{9}$,且α是第二象限角,则sin2α=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年辽宁大连十一中高一下学期段考二试数学(文)试卷(解析版) 题型:选择题

已知是非零向量且满足的夹角是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案