精英家教网 > 高中数学 > 题目详情
17.已知命题:“若x2>y2,则x>y”则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是(  )
A.0B.1C.2D.4

分析 先判断原命题为真,逆命题为假,根据原命题与逆否命题等价,逆命题与否命题等价,即可得结论.

解答 解:由题意,原命题为:若x2>y2,则x>y”,当x=-2,y=1,不满足,故为假命题;
逆命题为:若x>y,则x2>y2,当x=1,y=-2是不满足,故为假命题;
因为原命题与逆否命题等价,故逆否命题为假;逆命题与否命题等价,故否命题为假.
综上,真命题的个数为0.
故选A.

点评 本题以命题为载体,考查四种命题的真假,解题的关键是利用原命题与逆否命题等价,逆命题与否命题等价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=axlnx+b(a,b∈R)的图象过点(1,0),且在该点处的切线斜率为1.
(Ⅰ)求f(x)的极值;
(Ⅱ)若$g(x)=\frac{1}{2}x{\;}^2-mx+\frac{3}{2}$,存在x0∈(0,+∞)使得f(x0)≥g(x0)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的函数f(x)满足f(x)=-f(x+$\frac{3}{2}$),且f(-2)=f(-1)=-1,f(0)=2,则f(1)+f(2)+f(3)+…+f(2015)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.F1,F2是椭圆C1:$\frac{{x}^{2}}{4}$+y2=1与双曲线C2:的公共焦点,A,B分别是C1,C2在第二,四象限的公共点,若四边形AF1BF2为矩形.
(1)求双曲线C2的标准方程;      
(2)求S${\;}_{△{F}_{1}A{F}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知正实数a,b满足a+b=3,则$\frac{1}{a}+\frac{4}{5+b}$的最小值为(  )
A.1B.$\frac{7}{8}$C.$\frac{9}{8}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{a}{x}$-1,a∈R
(I)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直,求函数的极值;
(II)当a>0时,若函数f(x)在区间[1,3]上的最小值为$\frac{1}{3}$,求a的值;
(III)讨论函数g(x)=f′(x)-$\frac{x}{3}$零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=acosx-x+b(a,b∈R),且函数f(x)在x=-$\frac{π}{6}$处取得极值.
(1)求a的值;
(2)若?x∈[0,$\frac{π}{2}$],使得f(x)<3cosx-sinx成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC的内角A,B,C的对边分别为a,b,c,已知$\sqrt{3}$acosC-csinA=$\sqrt{3}$b.
(Ⅰ)求A;
(Ⅱ)若a=7,△ABC的周长为15,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数$f(x)=|{2sin({2x-\frac{π}{6}})+\frac{1}{2}}$|,则使f(x+c)=f(x-c)恒成立的最小正数c为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案