精英家教网 > 高中数学 > 题目详情
20.已知集合M={x|x2+x-2<0},N={x|log${\;}_{\frac{1}{2}}$x>-1},则M∩N=(  )
A.{x|-2<x<1}B.{x|0<x<1}C.{x|x>2}D.

分析 先分别求出集合M和N,由此利用交集定义能求出M∩N.

解答 解:∵集合M={x|x2+x-2<0}={x|-2<x<1},
N={x|log${\;}_{\frac{1}{2}}$x>-1}={x|0<x<2},
∴M∩N={x|0<x<1}.
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在区间$[{0,\frac{π}{2}}]$上任选两个数x和y,则y<sinx的概率为(  )
A.$\frac{2}{π^2}$B.$1-\frac{4}{π^2}$C.$\frac{4}{π^2}$D.$1-\frac{2}{π^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在[0,π]内任取一个实数x,则sinx≤$\frac{1}{2}$的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-aln(x+2),且f(x)存在两个极值点x1,x2,其中x1<x2
(I)求实数a的取值范围;
(II)证明不等式:$\frac{{f({x_1})}}{x_2}+1<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a,b,c分别为角A,B,C的对边,且满足b2+c2-a2=bc.
(1)求角A的值;
(2)若a=$\sqrt{3}$,记△ABC的周长为y,试求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-ax+4(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意的a∈[1,4),都存在x0∈(2,3]使得不等式f(x0)+ea+2a>m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1与抛物线y2=-4x的焦点重合,椭圆E的离心率为$\frac{\sqrt{2}}{2}$,过点M(m,0)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PC}$为定值.
(1)求椭圆E的方程;
(2)求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{xln(1+x)+{x}^{2},x≥0}\\{-xln(1-x)+{x}^{2},x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),则实数a的取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)经过点$E(\sqrt{3},1)$,离心率为$\frac{{\sqrt{6}}}{3}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点P为椭圆C上一动点,点A(3,0)与点P的垂直平分线交y轴于点B,求|OB|的最小值.

查看答案和解析>>

同步练习册答案