精英家教网 > 高中数学 > 题目详情
10.在[0,π]内任取一个实数x,则sinx≤$\frac{1}{2}$的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 由题意,本题属于几何概型的运用,已知区间的长度为π,满足sinx≤$\frac{1}{2}$,可得0≤x≤$\frac{π}{6}$或$\frac{5π}{6}≤x≤π$,区间长度为$\frac{π}{3}$,由几何概型公式解答.

解答 解:在区间[0,π]上,长度为π,
当x∈[0,π]时,sinx≤$\frac{1}{2}$,可得0≤x≤$\frac{π}{6}$或$\frac{5π}{6}≤x≤π$,区间长度为$\frac{π}{3}$
由几何概型知,符合条件的概率为$\frac{\frac{π}{3}}{π}$=$\frac{1}{3}$.
故选:C.

点评 本题考查解三角函数与几何概型等知识,关键是求出满足条件的x区间长度,利用几何概型关系求之.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2lnx+x2-ax+2(a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若存在x0∈(0,1],使得对任意的a∈[-2,0),不等式f(x0)>a2+3a+2-2mea(a+1)(其中e是自然对数的底数)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=xex(e为自然对数的底数),g(x)=(x+1)2
(I)记$F(x)=\frac{f(x)}{g(x)}$,讨论函F(x)单调性;
(II)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点.
(i)求参数a的取值范围;
(ii)设x1,x2是G(x)的两个零点,证明x1+x2+2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设M为边长为4的正方形ABCD的边BC的中点,N为正方形区域内任意一点(含边界),则$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值为(  )
A.32B.24C.20D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数a,b,c,d满足$\frac{2{a}^{2}-lna}{b}$=$\frac{3c-2}{d}$=1,则(a-c)2+(b-d)2的最小值为$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={x|x2+3x-4>0},B={x|-2<x≤3},且M=A∩B,则有(  )
A.1∈MB.2∈MC.(∁RB)⊆AD.B⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn且满足Sn=an+1(n∈N*),a1=1
(I)求数列{an}的通项公式an
(Ⅱ)设bn=log2(2an),求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2+x-2<0},N={x|log${\;}_{\frac{1}{2}}$x>-1},则M∩N=(  )
A.{x|-2<x<1}B.{x|0<x<1}C.{x|x>2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=|2x-1|+x+$\frac{1}{2}$的最小值为m.
(1)求m的值;
(2)已知a,b,c是正实数,且a+b+c=m,求证:2(a3+b3+c3)≥ab+bc+ca-3abc.

查看答案和解析>>

同步练习册答案