精英家教网 > 高中数学 > 题目详情
13.长方形ABCD中,AB=2$\sqrt{3}$,BC=2,沿对角线AC将△DAC折起,使D点到P点的位置,且二面角P-AC-B为直二面角.

(1)求PB的长;
(2)求三棱锥P-ABC外接球的表面积.

分析 (1)过P作PE⊥AC,过B作BF⊥AC,取AC中点G,连结PG、BG,通过已知条件及勾股定理可得PF=$\sqrt{7}$,利用二面角P-AC-B为直二面角及勾股定理可得结论;
(2)通过翻折的性质及(1)知三棱锥P-ABC外接球的球心为G、半径r=2,利用球的表面积公式计算即可.

解答 解:(1)过P作PE⊥AC,过B作BF⊥AC,取AC中点G,连结PG、BG,
∵AB=2$\sqrt{3}$,BC=2,四边形ABCD为长方形,
∴CG=BG=$\frac{1}{2}$AC=$\frac{1}{2}$$\sqrt{A{B}^{2}+B{C}^{2}}$=2,
∴△BCG为等边三角形,
∴PE=BF=$\sqrt{B{C}^{2}-(\frac{1}{2}CG)^{2}}$=$\sqrt{3}$,EF=$\frac{1}{2}$AC=2,
∴PF=$\sqrt{P{E}^{2}+E{F}^{2}}$=$\sqrt{7}$,
∵二面角P-AC-B为直二面角,
∴PE⊥BF,
∴BF⊥平面PEF,∴BF⊥PF,
∴PB=$\sqrt{B{F}^{2}+P{F}^{2}}$=$\sqrt{10}$;
(2)由于长方形ABCD中沿对角线AC将△DAC折起后,
PG、BG的长度任然不变,
由(1)知PG=BG=AG=CG=4,
∴三棱锥P-ABC外接球的球心为G,半径r=AG=2,
∴S=4π×22=16π
即三棱锥P-ABC外接球的表面积为16π.

点评 本题考查线面垂直的判定定理,勾股定理,球的表面积公式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若数列{an}为等差数列,Sn为其前n项和,S5=S6,公差d=-2.
(1)求数列{an}的通项公式;
(2)已知{bn}是公比为正的等比数列,b1=a5,b3=$\frac{1}{3}({a}_{1}+{a}_{2}+{a}_{3})$,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点P(2,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a、b的值;
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2,g(x)=f(x)+2(x+1)+alnx.
(1)已知函数g(x)在区间(0,1)上单调递减,求实数a的取值范围;
(2)函数h(x)=ln(1+x2)-$\frac{1}{2}$f(x)-k,讨论关于x的方程h(x)=0根的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在多边形P-ABCD中,△ABC是边长为2的正三角形,BD=DC=$\sqrt{3}$,AD=$\sqrt{5}$,PA=2$\sqrt{2}$,且PA⊥平面ABC.
(1)求证:PA∥平面BCD;
(2)求平面ADC与平面PBD的夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了整顿食品的安全卫生,食品监督部门对某食品厂生产的甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克)

规定:当食品中的有害微量元素含量在[0,10]时为一等品,在(10,20]为二等品,20以上为劣质品.
(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个.求甲的一等品数与乙的一等品数相等的概率;
(2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元.根据上表统计得到的甲、乙两种食品为一等品、二等品、劣质品,的频率分别估计这两种食品为,一等品、二等品、劣质品的概率.若分别从甲、乙食品中各抽取l件,设这两件食品给该厂带来的盈利为X,求随机变量X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,M为椭圆上任意一点且△MF1F2的周长等于6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)以M为圆心,MF1为半径作圆M,当圆M与直线l:x=4有公共点时,求△MF1F2面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某代表团有a,b,c,d,e,f六名男性成员全部住进A,B,C三个房间,每房间住2人,其中a没住房间A,同时b没住房间B的概率是$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案