精英家教网 > 高中数学 > 题目详情
2.已知实数x,y满足$\left\{\begin{array}{l}{x≥-1}\\{x-y-1≤0}\\{2x+y-2≤0}\end{array}\right.$,则z=x+2y的最大值为7.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分)
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z经过点A时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=-1}\\{2x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=4}\end{array}\right.$,即A(-1,4),
代入目标函数z=x+2y得z=-1+2×4=7
故答案为:7.

点评 本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.填空:把下列各式补充完整
(1)C${\;}_{n}^{m}$=$\frac{{A}_{n}^{m}}{m!}$=$\frac{n!}{m!(n-m)!}$;
(2)C${\;}_{n}^{m}$=C${\;}_{n}^{()}$
(3)C${\;}_{()}^{m}$=C${\;}_{n}^{m}$+C${\;}_{n}^{()}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若3位同学分别从4门课程中选修1门,且选修的课程均不相同,则不同的选法共有24种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等比数列{an}中,若a1+a3=10,a2+a4=-30,则a5=81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某商场想通过检查发票存根及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票存根上的销售额组成一个调查样本.这种抽取样本的方法是(  )
A.抽签法B.随机数法C.系统抽样法D.其他方式的抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(文科学生做)将函数f(x)=2sin(2x-$\frac{π}{3}$)的图象向右平移m(m>0)个单位,所得图象关于直线x=$\frac{π}{6}$对称,则实数m的最小值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意的非零实数a,b,若a?b的运算原理如图所示,且min{a,b,c}表示a,b,c中的最小值,则2?min{1,log0.30.1,30.1}的值为(  )
A.0B.1C.$2-log_{0.3}^{0.1}$D.2-30.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x-1)+3,则“k=$\frac{4}{3}$“是”直线l与圆O相切”的.
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.正方体ABCD-A1B1C1D1,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论错误的是(  )
A.A、M、O三点共线B.M、O、A1、A四点共面
C.A、O、C、M四点共面D.B、B1、O、M四点共面

查看答案和解析>>

同步练习册答案