精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-lnx-3.
(Ⅰ)当a=1时,求函数f(x)在点(1,-2)处的切线方程;
(Ⅱ)若函数f(x)在x∈[e-4,e]上的图象与直线y=t(0≤t≤1)恒有两个不同交点,求实数a的取值范围.
分析:(Ⅰ)把a=1代入函数解析式,求出函数在x=1处的导数,可得函数f(x)在点(1,-2)处的切线方程;
(Ⅱ)求出原函数的导函数,分a≤0和a>0讨论,当a>0时由导函数在不同区间内的符号得到原函数的单调性,从而求出函数在区间[e-4,e]上的最小值点,由最小值小于0,且区间端点处的函数值大于等于0联立不等式组求解a的取值范围.
解答:解:(Ⅰ)当a=1时,f(x)=x-lnx-3,f(x)=1-
1
x

∴f'(1)=0,
∴函数f(x)在点(1,-2)处的切线方程为:y=-2;
(Ⅱ)由f(x)=ax-lnx-3,得f(x)=a-
1
x

当a=0时,f(x)=-
1
x
在x∈[e-4,e]上恒小于0,函数f(x)在[e-4,e]上单调递减,不满足题意;
当a<0时,f(x)=a-
1
x
在x∈[e-4,e]上恒小于0,函数f(x)在[e-4,e]上单调递减,不满足题意;
当a>0时,由f(x)=a-
1
x
<0,得e-4<x<
1
a

∴当x∈[e-4
1
a
)
时,f'(x)<0⇒f(x)递减,
f(x)=a-
1
x
>0,得
1
a
<x<e

∴当x∈(
1
a
,e]
时,f'(x)>0⇒f(x)递增.
∴函数f(x)在x∈[e-4,e]上的图象与直线y=t(0≤t≤1)恒有两个不同交点,
则需
f(e-4)≥1
f(
1
a
)<0
f(e)≥1
5
e
<a<e2

∴实数a的取值范围是(
5
e
e2)
点评:本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数求函数的最值,体现了数学转化思想方法及分类讨论的数学思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案