精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{2{x}^{3}-a{x}^{2}-1,x<0}\\{|x-3|+a,x≥0}\end{array}\right.$恰有两个零点,则a的取值范围是(  )
A.(-3,0)B.(-∞,0)C.(-∞,-3)D.(0,+∞)

分析 先判断a<0,再分析x<0,函数在x=$\frac{a}{3}$时取得极大值-$\frac{{a}^{3}}{27}$-1,x=0时取得极小值-1,利用f(x)=$\left\{\begin{array}{l}{2{x}^{3}-a{x}^{2}-1,x<0}\\{|x-3|+a,x≥0}\end{array}\right.$恰有2个零点,即可得出结论.

解答 解:由题意,a<0,
x<0,f(x)=2x3-ax2-1,
f′(x)=2x(3x-a)=0,可得x=0或$\frac{a}{3}$,
∴函数在x=$\frac{a}{3}$时取得极大值-$\frac{{a}^{3}}{27}$-1,x=0时取得极小值-1,
∵函数f(x)=$\left\{\begin{array}{l}{2{x}^{3}-a{x}^{2}-1,x<0}\\{|x-3|+a,x≥0}\end{array}\right.$恰有两个零点,
∴-$\frac{{a}^{3}}{27}$-1<0且3+a>0
∴-3<a<0,
故选:A.

点评 本题考查分段函数,考查函数的零点,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 (a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,直线l:y=x+2与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左、右焦点分别为F1、F2,若直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.
(i)求点M的轨迹C2的方程;
(ii)过点F2作两条相互垂直的直线交曲线C2于A、C、B、D,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:y=kx+1,圆C:(x-1)2+y2=3.
(1)试证明:不论k为何实数,直线l和圆C总有两个交点;
(2)若直线1和圆C相交于M、N两点,且OM⊥ON(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设过点B(0,m)(m>0)的直线l与椭圆C相交于E,F两点,点B关于原点的对称点为D,若点D总在以线段EF为直径的圆内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=2x+b与圆x2+y2=9相切,则b=$3\sqrt{5}$或$-3\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),过椭圆的右焦点F任作一条直线交椭圆C于A,B两点,过椭圆中心任作一条直线交椭圆C于M,N两点.
(Ⅰ)求证:AM与AN的斜率之积为定值;
(Ⅱ)若2a•|AB|=|MN|2,试探究直线AB与直线MN的倾斜角之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若D是AB边上一点且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,$\overrightarrow{CD}$=μ$\overrightarrow{CA}$+$λ\overrightarrow{CB}$,则λ+μ=(  )
A.$\frac{2}{3}$B.1C.-1D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b是正实数,命题p为“若lga>lgb,则a>b”,则(  )
A.命题p的逆命题为“若a>b,则lga>lgb”,且该命题为假命题
B.命题p的否命题为“若lga>lgb,则a≤b”,且该命题为真命题
C.命题p的逆否命题为“若a≤b,则lga≤lgb”,且该命题为真命题
D.命题p的否定为“若lga≤lgb,则a≤b”,且该命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点P是△ABC在平面外的一点,PA=PB=PC=2,AB=BC=AC=1,
(1)求PC与平面ABC所成的角
(2)若E为PC的中点,求BE与平面ABC所成的角.

查看答案和解析>>

同步练习册答案