精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{4x-4(x≤1)}\\{{x}^{2}-4x+3(x>1)}\end{array}\right.$,则f(2)=(  )
A.4B.0C.-1D.1

分析 判断可得f(2)=22-4×2+3=-1.

解答 解:∵2>1,
∴f(2)=22-4×2+3=-1,
故选:C.

点评 本题考查了分段函数的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知sin2θ=$\frac{3}{7}$,则cos2(θ-$\frac{π}{4}$)的值是(  )
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若命题“?x∈(1,+∞),x2-(2+a)x+2+a≥0”为真命题,则实数a的取值范围是(  )
A.(-∞,-2]B.(-∞,2]C.[-2,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将5名志愿者分配到3个不同的奥运场馆参加接等工作,每个场馆至少分配一名志愿者的方案种数为(  )
A.240B.300C.150D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{log_2x+1,x≥0}\\{(\frac{1}{2})^x-1,x<0}\end{array}\right.$,则f(-1)+f(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|+|x+2|
(Ⅰ)作出函数f(x)的图象(不要求写作法);
(Ⅱ)若不等式9a2+1≥|a|f(x)对a∈(-∞,0)∪(0,+∞)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=log2(3x+1)+$\frac{a}{lo{g}_{2}({3}^{x}+1)}$在[1,+∞)上无零点,则实数a的取值范围是(  )
A.(-4,2)B.(-2,4)C.(0,+∞)D.(-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,AB=4,AC=6,cosB=$\frac{1}{8}$.
(Ⅰ)求△ABC面积;
(Ⅱ)求AC边上的中线BD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两点A(4,0),B(0,5),点C圆x2+y2=9上的任意一点,则△ABC面积的最小值是(  )
A.10-$\frac{3\sqrt{41}}{2}$B.10+$\frac{3\sqrt{41}}{2}$C.10-$\frac{\sqrt{41}}{2}$D.10+$\frac{\sqrt{41}}{2}$

查看答案和解析>>

同步练习册答案