精英家教网 > 高中数学 > 题目详情
1.若命题“?x∈(1,+∞),x2-(2+a)x+2+a≥0”为真命题,则实数a的取值范围是(  )
A.(-∞,-2]B.(-∞,2]C.[-2,2]D.(-∞,-2]∪[2,+∞)

分析 根据不等式恒成立的关系转化为一元二次函数,讨论判别式△的取值,进行求解即可.

解答 解:判别式△=(2+a)2-4(2+a)=(a+2)(a-2),
若判别式△=(a+2)(a-2)≤0,即-2≤a≤2时,不等式恒成立,满足条件.
若判别式△=(a+2)(a-2)>0即a>2或a<-2时,
设f(x)=x2-(2+a)x+2+a,
要使命题“?x∈(1,+∞),x2-(2+a)x+2+a≥0”为真命题,
则满足$\left\{\begin{array}{l}{x=-\frac{-(2+a)}{2}=\frac{a+2}{2}≤1}\\{f(1)=1≥0}\end{array}\right.$,则a≤0,
∵a>2或a<-2,∴a<-2,
综上,a≤2,
故选:B.

点评 本题主要考查不等式恒成立问题,讨论判别式△是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图所示是一个几何体的三视图,则这个几何体的外接球的表面积为32π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知四棱锥P-ABCD的底面是菱形,∠BCD=60°,AB=PB=PD=2,PC=$\sqrt{3}$,AC与BD交于O点,E,H分别为PA,OC的中点.
(1)求证:PH⊥平面ABCD;
(2)求直线CE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列结论正确的是(  )
A.当x>0且x≠1时,lgx+$\frac{1}{lgx}$≥2B.x>0时,6-x-$\frac{4}{x}$的最大值是2
C.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2D.当x∈(0,π)时,sinx+$\frac{4}{sinx}$≥4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC内角A,B,C的对边分别为a,b,c.
(1)若b是a与c的等比中项,求B的取值范围;
(2)若B=$\frac{π}{3}$,求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,正方体ABCD-A1B1C1D1中,M,N分别为棱BC,CC1的中点,则异面直线AC和MN所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{4x-4(x≤1)}\\{{x}^{2}-4x+3(x>1)}\end{array}\right.$,则f(2)=(  )
A.4B.0C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知Sn是等差数列{an}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:
①d>0
②S4029>0
③S4030<0
④数列{Sn}中的最大项为S4029
⑤|a2015|<|a2016|
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案