精英家教网 > 高中数学 > 题目详情
13.如图,正方体ABCD-A1B1C1D1中,M,N分别为棱BC,CC1的中点,则异面直线AC和MN所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用同量法能求出异面直线AC和MN所成角.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则A(2,0,0),C(0,2,0),M(1,2,0),N(0,2,1),
$\overrightarrow{AC}$=(-2,2,0),$\overrightarrow{MN}$=(-1,0,1),
设异面直线AC和MN所成角为θ,
cosθ=$\frac{|\overrightarrow{AC}•\overrightarrow{MN}|}{|\overrightarrow{AC}|•|\overrightarrow{MN}|}$=$\frac{2}{\sqrt{8}•\sqrt{2}}$=$\frac{1}{2}$,
∴θ=$\frac{π}{3}$.
∴异面直线AC和MN所成角为$\frac{π}{3}$.
故选:B.

点评 本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.从抛物线C:x2=2py(p>0)外一点P作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点M(x0,4)在抛物线C上,且|MF|=6(F为抛物线的焦点).
(1)求抛物线C的方程;
(2)求证:四边形PCQD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数图象恰好经过k个格点,则称函数为k阶格点函数,给出下列四个函数:
①y=sinx+1;
②y=cos(x+$\frac{π}{3}$);
③y=ex-1;
④y=(x+1)2
其中为一阶格点函数的序号为①③(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若命题“?x∈(1,+∞),x2-(2+a)x+2+a≥0”为真命题,则实数a的取值范围是(  )
A.(-∞,-2]B.(-∞,2]C.[-2,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过M(1,2$\sqrt{2}$)作直线与抛物线y2=8x,有且只有一个公共点,这样的直线有(  )条.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将5名志愿者分配到3个不同的奥运场馆参加接等工作,每个场馆至少分配一名志愿者的方案种数为(  )
A.240B.300C.150D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{log_2x+1,x≥0}\\{(\frac{1}{2})^x-1,x<0}\end{array}\right.$,则f(-1)+f(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=log2(3x+1)+$\frac{a}{lo{g}_{2}({3}^{x}+1)}$在[1,+∞)上无零点,则实数a的取值范围是(  )
A.(-4,2)B.(-2,4)C.(0,+∞)D.(-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知三棱锥P-ABC的四个顶点在半径为2的球面上,且PA⊥平面ABC,若AB=2,AC=$\sqrt{3}$∠BAC=$\frac{π}{2}$,则三棱锥P-ABC的体积是$\sqrt{3}$.

查看答案和解析>>

同步练习册答案