| A. | 已知命题p和q,若“p∨q”为假命题,则命题p和q中必一真一假 | |
| B. | 命题“?c∈R,方程2x2+y2=c表示椭圆”的否定是“?c∈R,方程2x2+y2=c不表示椭圆” | |
| C. | 命题“若k<9,则方程“$\frac{x^2}{25-k}$+$\frac{y^2}{k-9}$=1表示双曲线”是假命题 | |
| D. | 命题“在△ABC中,若sinA<$\frac{1}{2}$,则A<$\frac{π}{6}$”的逆否命题为真命题 |
分析 分别判断各个选项的正误,从而求出答案.
解答 解:对于A:若“p∨q”为假命题,则命题p和q均是假命题,故A错误;
对于B:命题“?c∈R,方程2x2+y2=c表示椭圆”的否定是“?c∈R,方程2x2+y2=c不表示椭圆,故B正确;
对于C:命题“若k<9,则方程“$\frac{x^2}{25-k}$+$\frac{y^2}{k-9}$=1表示双曲线”是真命题,故C错误;
对于D:命题“在△ABC中,若sinA<$\frac{1}{2}$,则A<$\frac{π}{6}$”是假命题,故其逆否命题为假命题,故D错误;
故选:B.
点评 本题考查了充分必要条件,考查四种命题的关系,考查椭圆、双曲线以及三角函数问题,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{15}}}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,1,1) | B. | (1,1,-1) | C. | (-1,1,1) | D. | (1,-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\sqrt{3},0})∪({\sqrt{3},+∞})$ | B. | $({-\sqrt{3},0})∪({0,\sqrt{3}})$ | C. | $({-∞,-\sqrt{3}})∪({0,\sqrt{3}})$ | D. | $({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com