精英家教网 > 高中数学 > 题目详情
7.函数f(x)=$\frac{π}{2}$-$\frac{sinx}{3+|x|}$的最大值是M,最小值是m,则f(M+m)的值等于(  )
A.0B.C.$\frac{π}{2}$D.π

分析 可判断f(x)-$\frac{π}{2}$=-$\frac{sinx}{3+|x|}$是奇函数,从而可得M-$\frac{π}{2}$+m-$\frac{π}{2}$=0,从而解得.

解答 解:∵f(x)=$\frac{π}{2}$-$\frac{sinx}{3+|x|}$,∴f(x)-$\frac{π}{2}$=-$\frac{sinx}{3+|x|}$;
∵f(x)-$\frac{π}{2}$=-$\frac{sinx}{3+|x|}$是奇函数,
∴f(x)-$\frac{π}{2}$=-$\frac{sinx}{3+|x|}$的最大值与最小值的和为0,
即M-$\frac{π}{2}$+m-$\frac{π}{2}$=0,
故M+m=π,
故f(M+m)=f(π)=$\frac{π}{2}$,
故选C.

点评 本题考查了函数的性质的判断与应用,同时考查了转化与整体的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在平面区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$内任取一点P(x,y),则(x,y)满足2x+y≤1的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线f(x)=$\frac{2}{x}$+3x在点(1,f(1))处的切线方程为y=x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an},{bn}的前n项和分别是Sn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-3}{2n+3}$,则$\frac{{a}_{6}}{{b}_{6}}$等于(  )
A.$\frac{3}{2}$B.1C.$\frac{6}{5}$D.$\frac{27}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若满足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x+2y-2≥0}\\{ax+by+c≤0}\end{array}\right.$,的点(x,y)所表示的区域能被直径为$\sqrt{10}$的圆完全覆盖,则区域D的面积最大值为$\frac{5}{2}$,当区域D的面积最大时,z=x-y最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},{bn}满足:a1=-1,b1=2,an+1=-bn,bn+1=2an-3bn(n∈N*).则b2015+b2016=-22015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若点P(x,y)为集合M={(x,y)|$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y≤25}\\{x-1≥0}\end{array}\right.$}内的一个元素时,则$\frac{x+5y}{x}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sinx=-1,则角x等于(  )
A.$\frac{3π}{2}$B.kπ(k∈Z)C.2kπ-$\frac{π}{2}$(k∈Z)D.2(k+1)π+$\frac{3π}{2}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在括号内填上适当的函数,使下列等式成立:
(1)d(ax)=adx;
(2)d($\frac{2}{3}{x}^{\frac{3}{2}}$)$\sqrt{x}$dx;
(3)d(-$\frac{1}{3}$sin3x)=-cos3xdx;
(4)d($\frac{1}{tanx}$)=-$\frac{1}{1+{x}^{2}}$dx.

查看答案和解析>>

同步练习册答案