分析 作出可行域,根据可行域求出k=$\frac{y}{x}$的最小值得出答案.
解答
解:作出$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y≤25}\\{x-1≥0}\end{array}\right.$表示的可行域如图:
令k=$\frac{y}{x}$,则当直线y=kx经过点C时,斜率最小,即k=$\frac{y}{x}$最小.
解方程组$\left\{\begin{array}{l}{x-4y+3=0}\\{3x+5y=25}\end{array}\right.$得C(5,2).
∴$\frac{y}{x}$的最小值$\frac{2}{5}$.
∴$\frac{x+5y}{x}$=1+$\frac{5y}{x}$的最小值为1+5×$\frac{2}{5}$=3.
故答案为3.
点评 本题考查了简单的线性规划,根据可行域求出$\frac{y}{x}$的最小值是解题关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 有一个角是30°的等腰三角形 | B. | 等边三角形 | ||
| C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2π | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ①③ | C. | ①② | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数段 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 甲班频数 | 4 | 6 | 10 | 18 | 12 |
| 乙班频数 | 2 | 6 | 18 | 16 | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com