精英家教网 > 高中数学 > 题目详情
15.已知等差数列{an},{bn}的前n项和分别是Sn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-3}{2n+3}$,则$\frac{{a}_{6}}{{b}_{6}}$等于(  )
A.$\frac{3}{2}$B.1C.$\frac{6}{5}$D.$\frac{27}{23}$

分析 由等差数列的通项公式推导出$\frac{{a}_{6}}{{b}_{6}}$=$\frac{{S}_{11}}{{T}_{11}}$,由此能求出结果.

解答 解:∵等差数列{an},{bn}的前n项和分别是Sn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-3}{2n+3}$,
∴$\frac{{a}_{6}}{{b}_{6}}$=$\frac{2{a}_{6}}{2{b}_{6}}$=$\frac{{a}_{1}+{a}_{11}}{{b}_{1}+{b}_{11}}$=$\frac{\frac{11}{2}({a}_{1}+{a}_{11})}{\frac{11}{2}({b}_{1}+{b}_{11})}$
=$\frac{{S}_{11}}{{T}_{11}}$=$\frac{3×11-3}{2×11+3}$=$\frac{30}{25}$=$\frac{6}{5}$.
故答案为:$\frac{6}{5}$.

点评 本题考查等差数列的两项比值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数$f(x)=\sqrt{3}cos2x-sin2x$的图象是由函数y=2sin2x的图象按照向量$\overrightarrow a$平移得到的,则f(x)的周期为π,$\overrightarrow a$==(-$\frac{π}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{3{a}_{n}+1}$,则an=$\frac{{2}^{n-2}}{3•{2}^{n-2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正项数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差数列,且公差相等,则a6=(  )
A.$\frac{11}{4}$B.$\frac{3}{2}$C.$\frac{7}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若2x+4y=4,则x+2y的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下面四个推导过程,正确的有(1)(4).
(1)∵a,b∈R+,∴$\frac{a}{b}$+$\frac{b}{a}$≥2$\sqrt{\frac{a}{b}•\frac{b}{a}}$=2;
(2)∵x,y∈R+,∴lgx+lgy≥2$\sqrt{lgx•lgy}$;
(3)∵a∈R,a≠0,∴$\frac{1}{a}$+a≥2$\sqrt{\frac{1}{a}•a}$=2;
(4)∵x,y∈R,xy<0,∴$\frac{x}{y}$+$\frac{y}{x}$=-[(-$\frac{x}{y}$)+(-$\frac{y}{x}$)]≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{π}{2}$-$\frac{sinx}{3+|x|}$的最大值是M,最小值是m,则f(M+m)的值等于(  )
A.0B.C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知z1=x2++2i,z2=-3+4i(x∈R),则|z1+z2|的最小值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.记不等式x2+x-6<0的解集为集合A,函数f(x)=$\frac{1}{\sqrt{{(lo{g}_{2}x)}^{2}-1}}$定义域为B,则A∩B=(  )
A.(0,$\frac{1}{2}$)B.(2,+∞)C.(0,$\frac{1}{2}$)∪(2,+∞)D.(0,$\frac{1}{2}$]∪[2,+∞)

查看答案和解析>>

同步练习册答案