精英家教网 > 高中数学 > 题目详情
20.给出下面四个推导过程,正确的有(1)(4).
(1)∵a,b∈R+,∴$\frac{a}{b}$+$\frac{b}{a}$≥2$\sqrt{\frac{a}{b}•\frac{b}{a}}$=2;
(2)∵x,y∈R+,∴lgx+lgy≥2$\sqrt{lgx•lgy}$;
(3)∵a∈R,a≠0,∴$\frac{1}{a}$+a≥2$\sqrt{\frac{1}{a}•a}$=2;
(4)∵x,y∈R,xy<0,∴$\frac{x}{y}$+$\frac{y}{x}$=-[(-$\frac{x}{y}$)+(-$\frac{y}{x}$)]≤-2.

分析 利用基本不等式的运算性质即可判断出结论.

解答 解:(1)∵a,b∈R+,∴$\frac{a}{b}$+$\frac{b}{a}$≥2$\sqrt{\frac{a}{b}•\frac{b}{a}}$=2,正确;
(2)∵x,y∈R+,∴lgx+lgy≥2$\sqrt{lgx•lgy}$,x,y∈(0,1)时不成立;
(3)∵a∈R,a≠0,∴$\frac{1}{a}$+a≥2$\sqrt{\frac{1}{a}•a}$=2,a<0时不成立;
(4)∵x,y∈R,xy<0,∴$\frac{x}{y}$+$\frac{y}{x}$=-[(-$\frac{x}{y}$)+(-$\frac{y}{x}$)]≤-2,成立.
故答案为:(1)(4).

点评 本题考查了基本不等式的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输入的M的值为55,则输出的i的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a=${∫}_{0}^{π}$sinxdx,在二项式(x-$\frac{a}{\sqrt{x}}$)6的展开式中,x3的系数的值为(  )
A.60B.36C.-24D.-60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(2x+φ)(|φ|<π)的图象过点P(0,$\frac{1}{2}$),如图,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.-$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an},{bn}的前n项和分别是Sn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-3}{2n+3}$,则$\frac{{a}_{6}}{{b}_{6}}$等于(  )
A.$\frac{3}{2}$B.1C.$\frac{6}{5}$D.$\frac{27}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知复数ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i(i为虚数单位).
(1)求ω2及ω2+ω+1的值;
(2)若等比数列{an}的首项a1=1,公比q=ω,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},{bn}满足:a1=-1,b1=2,an+1=-bn,bn+1=2an-3bn(n∈N*).则b2015+b2016=-22015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x,y都是正实数,且x+y=1,若不等式x2-mxy+4y≥0对满足以上条件的任意x,y恒成立,则实数m的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\frac{sinα}{cos\frac{α}{2}}$=$\frac{8}{5}$,则cosα=$-\frac{7}{25}$.

查看答案和解析>>

同步练习册答案