分析 把已知数列递推式两边取倒数,可得数列{$\frac{1}{{a}_{n}}-3$}构成以-2为首项,以$\frac{1}{2}$为公比的等比数列,求出等比数列的通项公式后可得an.
解答 解:由an+1=$\frac{2{a}_{n}}{3{a}_{n}+1}$,得$\frac{1}{{a}_{n+1}}=\frac{1}{2}\frac{1}{{a}_{n}}+\frac{3}{2}$,
即$\frac{1}{{a}_{n+1}}-3=\frac{1}{2}(\frac{1}{{a}_{n}}-3)$,
∵$\frac{1}{{a}_{1}}-3=-2≠0$,
∴数列{$\frac{1}{{a}_{n}}-3$}构成以-2为首项,以$\frac{1}{2}$为公比的等比数列,
则$\frac{1}{{a}_{n}}-3=-2(\frac{1}{2})^{n-1}=-\frac{1}{{2}^{n-2}}$,
则$\frac{1}{{a}_{n}}=3-\frac{1}{{2}^{n-2}}=\frac{3•{2}^{n-2}-1}{{2}^{n-2}}$,
∴${a}_{n}=\frac{{2}^{n-2}}{3•{2}^{n-2}-1}$.
故答案为:$\frac{{2}^{n-2}}{3•{2}^{n-2}-1}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列通项公式的求法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{11}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60 | B. | 36 | C. | -24 | D. | -60 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 1 | C. | $\frac{6}{5}$ | D. | $\frac{27}{23}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{2}$ | B. | kπ(k∈Z) | C. | 2kπ-$\frac{π}{2}$(k∈Z) | D. | 2(k+1)π+$\frac{3π}{2}$(k∈Z) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com