精英家教网 > 高中数学 > 题目详情
已知2ax2-x≤0对x∈[1,2]恒成立,求a的取值范围.
考点:函数恒成立问题
专题:函数的性质及应用
分析:将不等式进行参数分离,利用函数的单调性求出函数的最值,即可得到a的取值范围.
解答: 解:∵2ax2-x≤0对x∈[1,2]恒成立,
∴2ax2≤x对x∈[1,2]恒成立,
即2ax≤1,
∴a
1
2x

∵x∈[1,2],
1
4
1
2x
1
2

∴要使a
1
2x

则a
1
4

即a的取值范围是a
1
4
点评:本题主要考查不等式恒成立问题,将参数进行分离是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为线段CD中点.
(1)求直线B1E与直线AD1所成的角的余弦值;
(2)若AB=2,求二面角A-B1E-
A
 
1
的大小;
(3)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥S-ABCD中,底面是边长为2厘米的正方形,侧棱长都是2厘米.
(1)画出该棱锥的三视图,并标明尺寸;
(2)求该棱锥中二面角A-SB-C的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c,且有
tanA+tanC
3
=
sinB
cosC

(1)求cosA的值;
(2)若b=2,c=3,D为BC上一点.且
CD
=2
DB
,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,港口A在港口O的正东120海里处,小岛B在港口O的北偏东60°的方向,且在港口A北偏西30°的方向上.一艘科学考察船从港口O出发,沿北偏东30°的OD方向以20海里/小时的速度驶离港口O.一艘给养快艇从港口A以60海里/小时的速度驶向小岛B,在B岛转运补给物资后以相同的航速送往科考船.已知两船同时出发,补给装船时间为1小时.
(1)求给养快艇从港口A到小岛B的航行时间;
(2)给养快艇驶离港口A后,最少经过多少时间能和科考船相遇?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)设点M在线段PC上,
PM
MC
=
1
2
,求证:PA∥平面MQB;
(3)在(2)的条件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-2x+2m,当x∈[-1,+∞)时,f(x)≥m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|1≤x≤3},集合B={x|x<2},则A∩B=
 

查看答案和解析>>

同步练习册答案