精英家教网 > 高中数学 > 题目详情
13.已知直线x=$\frac{b}{2}$与椭圆C:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0)交于A、B两点,若椭圆C的两个焦点与A、B两点可以构成一个矩形,则椭圆C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{10}}{4}$

分析 由题意求得A点坐标,将A代入直线方程,利用椭圆的性质,即可求得椭圆的离心率.

解答 解:∵椭圆C的两个焦点与A、B两点可以构成一个矩形,∴AB=2c,即A($\frac{b}{2}$,c),
∴$\frac{{c}^{2}}{{a}^{2}}+\frac{(\frac{b}{2})^{2}}{{b}^{2}}=1$⇒3a2=4c2,⇒e=$\frac{c}{a}=\frac{\sqrt{3}}{2}$,
故选:C

点评 本题考查椭圆的标准方程及简单几何性质,考查椭圆离心率的求法,考查计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知$\frac{1}{sinφ}$+$\frac{1}{cosφ}$=2$\sqrt{2}$,若φ∈(0,$\frac{π}{2}$),则${∫}_{-1}^{tanφ}$(x2-2x)dx=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=asinx+bcosx(a,b为常数且a≠0,x∈R).当x=$\frac{π}{4}$时,f(x)取得最大值.
?(1)计算f($\frac{11π}{4}$)的值;
?(2)设g(x)=f($\frac{π}{4}$-x),判断函数g(x)的奇偶性,并说明理由.??

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.非常数数列{an}满足an-1+an+1=2an(n≥2),则$\frac{{a}_{5}-{a}_{4}}{{a}_{3}-{a}_{2}}$的值为(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.我校在高三11月月考中约有1000名理科学生参加考试,数学考试成绩ξ~N(100,a2)(a>0,满分150分),统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的60%,则此次月考中数学成绩不低于120分的学生约有200人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an},a1=2,an=$\frac{1}{n}$+(1-$\frac{1}{n}$)an-1(n≥2,n∈N*).
(1)证明:数列{nan}是等差数列;
(2)记bn=$\frac{1}{{n}^{2}{a}_{n}}$,{bn}的前n项和Sn,求证Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足条件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+5≥0}\end{array}\right.$,则z=2x+y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义“函数y=f(x)是D上的a级类周期函数”如下:函数y=f(x),x∈D,对于给定的非零常数a,总存在非零常数T,使得定义域D内的任意实数x都有af(x)=f(x+T)恒成立,此时T为f(x)的周期.若y=f(x)是[1,+∞)上的a级类周期函数,且T=1,当x∈[1,2)时,f(x)=2x(2x+1),且y=f(x)是[1,+∞)上的单调递增函数,则实数a的取值范围为(  )
A.$[{\frac{5}{6},+∞})$B.[2,+∞)C.$[{\frac{10}{3},+∞})$D.[10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.随着手机的发展,“微信”逐渐成为人们交流的一种形式,某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频率分布及“使用微信交流”赞成人数如下表.
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成
不赞成
合计
(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.
参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案