分析 (1)根据数列的递推公式和等差数列的定义即可证明,
(2)先求出bn,再裂项求和和放缩即可证明.
解答 证明:(1)∵an=$\frac{1}{n}$+(1-$\frac{1}{n}$)an-1,
∴nan=(n-1)an-1+1,
∴nan-(n-1)an-1=1,
∵a1=2,
∴1×a1=2,
∴数列{nan}是等差数列是以2为首项,以1为公差的等差数列;
(2)由(1)可得nan=n+1,
∴an=$\frac{n+1}{n}$,
∴bn=$\frac{1}{{n}^{2}{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
那么Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$<1
点评 本题考查了数列的通项公式和裂项求和,考查了学生的运算能力和转化能力,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{kπ}{2}$,0)(k∈Z) | B. | (kπ+$\frac{π}{2}$,0)(k∈Z) | C. | (kπ+$\frac{π}{4}$,0)(k∈Z) | D. | (kπ,0)(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{10}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{9}{4},+∞})$ | B. | $({\frac{3}{2},+∞})$ | C. | $({\sqrt{2},+∞})$ | D. | (3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com