精英家教网 > 高中数学 > 题目详情
7.在${(2x+\frac{a}{x^2})^5}$的展开式中x-4的系数为320,则实数a=2.

分析 根据二项式展开式的通项公式,令x的指数等于-4求出r的值,
再利用x-4系数列方程求出a的值.

解答 解:${(2x+\frac{a}{x^2})^5}$的展开式中,项公式为
Tr+1=${C}_{5}^{r}$•(2x)5-r•${(\frac{a}{{x}^{2}})}^{r}$=${C}_{5}^{r}$•25-r•ar•x5-3r
令5-3r=-4,解得r=3;
所以展开式中x-4的系数为
${C}_{5}^{3}$•22•a3=320,
解得a=2.
故答案为:2.

点评 本题考查了利用二项式展开式的通项公式求特定项系数的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(4,$\frac{π}{3}$),点B的极坐标为(2$\sqrt{2}$,$\frac{π}{4}$),曲线C的直角坐标方程为:x2+(y-1)2=1.
(Ⅰ)求曲线C和直线AB的极坐标方程;
(Ⅱ)过点O的射线l交曲线C于M点,交直线AB于N点,若|OM|•|ON|=4,求射线l所在直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an},a1=2,an=$\frac{1}{n}$+(1-$\frac{1}{n}$)an-1(n≥2,n∈N*).
(1)证明:数列{nan}是等差数列;
(2)记bn=$\frac{1}{{n}^{2}{a}_{n}}$,{bn}的前n项和Sn,求证Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.观察以下三个不等式:
①(12+22+32)(32+42+52)≥(1×3+2×4+3×5)2
②(72+92+102)(62+82+112)≥(7×6+9×8+10×11)2
③(202+302+20172)(992+902+20162)≥(20×99+30×90+2017×2016)2
若2x+y+z=-7,x,y,z∈R时,则(x+1)2+(y+2)2+(z+1)2的最小值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义“函数y=f(x)是D上的a级类周期函数”如下:函数y=f(x),x∈D,对于给定的非零常数a,总存在非零常数T,使得定义域D内的任意实数x都有af(x)=f(x+T)恒成立,此时T为f(x)的周期.若y=f(x)是[1,+∞)上的a级类周期函数,且T=1,当x∈[1,2)时,f(x)=2x(2x+1),且y=f(x)是[1,+∞)上的单调递增函数,则实数a的取值范围为(  )
A.$[{\frac{5}{6},+∞})$B.[2,+∞)C.$[{\frac{10}{3},+∞})$D.[10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线$f(x)=\frac{{{{ln}^2}x+alnx+a}}{x}$在点(e,f(e))处的切线与直线2x+e2y=0平行,a∈R.
(1)求a的值;
(2)求证:$\frac{f(x)}{x}>\frac{a}{e^x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知五边形ABCDE是由直角梯形ABCD和等腰直角三角形ADE构成,如图所示,AB⊥AD,AE⊥DE,AB∥CD,且AB=2CD=2DE=4,将五边形ABCDE沿着AD折起,且使平面ABCD⊥平面ADE.
(Ⅰ)若M为DE中点,边BC上是否存在一点N,使得MN∥平面ABE?若存在,求$\frac{BN}{BC}$的值;若不存在,说明理由;
(Ⅱ)求四面体B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校在高二年级开展了体育分项教学活动,将体育课分为大球(包括篮球、排球、足球)、小球(包括乒乓球、羽毛球)、田径、体操四大项(以下简称四大项,并且按照这个顺序).为体现公平,学校规定时间让学生在电脑上选课,据初步统计,在全年级980名同学中,有意申报四大项的人数之比为3:2:1:1,而实际上由于受多方面条件影响,最终确定的四大项人数必须控制在2:1:3:1,选课不成功的同学由电脑自动调剂到田径类.
(Ⅰ)随机抽取一名同学,求该同学选课成功(未被调剂)的概率;
(Ⅱ)某小组有五名同学,有意申报四大项的人数分别为2、1、1、1,记最终确定到田径类的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x>0},B={x|x2-2x-3<0},则A∩B=(  )
A.(-1,0)B.(0,3)C.(-∞,0)∪(3,+∞)D.(-1,3)

查看答案和解析>>

同步练习册答案