精英家教网 > 高中数学 > 题目详情
9.“-1<x<3”是“x2-2x<8”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义,结合不等式的性质即可得到结论.

解答 解:由“x2-2x<8”解得-2<x<4,
则“-1<x<3”能推出“x2-2x<8”,但x2-2x<8”不能推出“-1<x<3”,
故“-1<x<3”是“x2-2x<8”的充分不必要条件,
故选:A.

点评 本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{{{e^x}+{e^{-x}}+sinx}}{{{e^x}+{e^{-x}}}}$,其导函数记为f′(x),则f(2016)+f′(2016)+f(-2016)-f′(-2016)=(  )
A.2016B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\frac{π}{2}<α<π$且$sin(α+\frac{π}{6})=\frac{3}{5}$,则$cos(α-\frac{π}{6})$等于(  )
A.$\frac{{-4-3\sqrt{3}}}{10}$B.$\frac{{4+3\sqrt{3}}}{10}$C.$\frac{{4-3\sqrt{3}}}{10}$D.$\frac{{3\sqrt{3}-4}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若sinA•sinB=cos2$\frac{C}{2}$,b=4,则a=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$f(x)=cos(x-\frac{π}{6})+cos(x+\frac{π}{6})$,则函数f(x)的最小正周期为2π,单调递增区间为[2kπ-π,2kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
(1)求数列{an}的通项公式;
(2)设数列{bn}满足$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+$\frac{{b}_{3}}{{a}_{3}}$+…+$\frac{{b}_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n项和Tn
(3)是否存在实数K,使得Tn≥K恒成立.若有,求出K的最大值,若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知O为坐标原点,点A(1,0),点B(x,2).
(1)求|$\overrightarrow{AB}$|;
(2)设函数f(x)=|$\overrightarrow{AB}$|2+$\overrightarrow{OA}$•$\overrightarrow{OB}$,求函数f(x)的最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知变量a,b满足b=-$\frac{1}{2}$a2+3lna(a>0),若点Q(m,n)在直线y=2x+$\frac{1}{2}$上,则(a-m)2+(b-n)2的最小值为(  )
A.$\frac{9}{5}$B.$\frac{3\sqrt{5}}{5}$C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.sin420°=$\frac{\sqrt{3}}{2}$;cos$\frac{4}{3}$π=-$\frac{1}{2}$;tan(-$\frac{17}{4}$π)=-1.

查看答案和解析>>

同步练习册答案