精英家教网 > 高中数学 > 题目详情
4.已知定义域为R的函f(x)=$\frac{-{2}^{x}+a}{{2}^{x}+1}$是奇函敷.
(1)求a的值;
(2)判断并证明函数f(x)的单调性;
(3)设m为常数,且m>0,若对任意的t∈[1,2],不等式f(-m+2t)+f(-mt2+1)≥0恒成立,求m的取值范围.

分析 (1)由f(x)是R上的奇函数,得f(0)=0,代入f(x)可得a的值;
(2)由f(x)的解析式,判断出f(x)是定义域上的减函数;
(3)问题转化为m≥$\frac{2t+1}{{t}^{2}+1}$在t∈[1,2]恒成立;令h(t)=$\frac{2t+1}{{t}^{2}+1}$,t∈[1,2],根据函数的单调性求出m的范围即可.

解答 解:(1)∵f(x)是R上的奇函数,
∴f(0)=$\frac{{-2}^{0}+a}{{2}^{0}+1}$=0,解得:a=1;
(2)由(1)得:f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$=-1+$\frac{2}{{2}^{x}+1}$,
显然$\frac{2}{{2}^{x}+1}$随着x的增大而减小,
故f(x)在R单调递减;
(3)∵f(-m+2t)+f(-mt2+1)≥0恒成立,m>0,t∈[1,2],
∴f(-mt2+1)≥-f(-m+2t);
∵f(x)是奇函数,∴-f(-m+2t)=f(m-2t),
∴f(-mt2+1)≥f(m-2t),
又∵f(x)是减函数,∴-mt2+1≤m-2t,
即mt2-2t+m-1≥0恒成立,m>0,t∈[1,2],
∴m≥$\frac{2t+1}{{t}^{2}+1}$在t∈[1,2]恒成立;
令h(t)=$\frac{2t+1}{{t}^{2}+1}$,t∈[1,2],
∴h′(t)=$\frac{-{2t}^{2}-2t+2}{{{(t}^{2}+1)}^{2}}$,h″(t)=-4t-2<0,
∴h′(t)在[1,2]递减,h′(t)max=h′(1)=-$\frac{1}{2}$<0,
∴h(t)在[1,2]递减,h(t)max=h(1)=$\frac{3}{2}$
∴m的取值范围是{m|m≥$\frac{3}{2}$}.

点评 本题考查了函数的奇偶性与单调性的性质和应用,以及不等式恒成立问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知某几何体的三视图如图所示,该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,AB为圆O的切线,A为切点,C为线段AB的中点,过C作圆O的割线CED(E在C,D之间),求证:∠CBE=∠BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某几何体的三视图如图所示,则它的体积为$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,其中主视图和左视图都是边长为2的正方形,俯视图中的曲线是半径为2的$\frac{1}{4}$圆弧,则该几何体的体积为(  )
A.6-πB.8-πC.6-2πD.8-2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{{e}^{x-1},x<1}\\{x,x≥1}\end{array}\right.$,则使得f(x)≤2成立的x的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若不等式$\frac{{x}^{2}-8x+20}{m{x}^{2}-mx-1}$<0对一切x∈R都成立,则实数m的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足:2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|2$\overrightarrow{a}$-$\overrightarrow{b}$|≠0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+(k-1)a-x(a<1)是定义域为R的偶函数.
(Ⅰ)求k的值.
(Ⅱ)若f(1)=$\frac{5}{2}$且g(x)=a2x+a-2x-2m•f(x)的最小值为-3,求m的值.

查看答案和解析>>

同步练习册答案