【题目】设f(x)=|ax﹣2|.
(1)若关于x的不等式f(x)<3的解集为(﹣ , ),求a的值;
(2)f(x)+f(﹣x)≥a对于任意x∈R恒成立,求实数a的取值范围.
【答案】
(1)解:由条件知- 与 是方程|ax﹣2|=3的两个根,
即: 且
解得a=﹣3
(2)解:设g(x)=f(x)+f(﹣x)=|ax﹣2|+|ax+2|,
由绝对值不等式性质:g(x)=f(x)+f(﹣x)≥|(ax﹣2)﹣(ax+2)|=4,即:g(x)min=4,
若f(x)+f(﹣x)≥a对于任意x∈R恒成立,只需:a≤4
【解析】(1)由条件知- 与 是方程|ax﹣2|=3的两个根,即: 且 ,由此求a的值;(2)由绝对值不等式性质:f(x)+f(﹣x)≥|(ax﹣2)﹣(ax+2)|=4,即可求实数a的取值范围.
【考点精析】认真审题,首先需要了解绝对值不等式的解法(含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号).
科目:高中数学 来源: 题型:
【题目】目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
善于使用学案 | 不善于使用学案 | 总计 | |
学习成绩优秀 | 40 | ||
学习成绩一般 | 30 | ||
总计 | 100 |
参考公式: ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)利用分层抽样的方法从善于使用学案的同学中随机抽取6人,从这6人中抽出3人继续调查,设抽出学习成绩优秀的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的参数方程为(为参数)
(1)求圆的直角坐标方程和直线的普通方程;
(2)若直线与圆相切,求实数的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|cosx|sinx,给出下列五个说法:
①f( π)=﹣ ;
②若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z);
③f(x)在区间[﹣ , ]上单调递增;
④函数f(x)的周期为π.
⑤f(x)的图象关于点( ,0)成中心对称.
其中正确说法的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览下图是从2012年到2017年每年参观人数的折线图根据图中信息,下列结论中正确的是
A. 2013年以来,每年参观总人次逐年递增
B. 2014年比2013年增加的参观人次不超过50万
C. 2012年到2017年这六年间,2017年参观总人次最多
D. 2012年到2017年这六年间,平均每年参观总人次超过160万
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2, .
(1)求证:PD⊥平面PAB;
(2)求直线PB与平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|(x﹣2m+1)(x﹣m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求实数m的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为 (α为参数)M是C1上的动点,P点满足 =2 ,P点的轨迹为曲线C2
(1)求C2的方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ= 与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等腰△ABC中,AC=BC= ,AB=2,E,F分别为AC,BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP= .
(1)求证:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com