精英家教网 > 高中数学 > 题目详情
6.若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),若f′(x0)=4,则$\underset{lim}{h→0}$$\frac{f({x}_{0})-f({x}_{0}-2h)}{h}$的值为(  )
A.2B.4C.8D.12

分析 利用导数的定义即可得出.

解答 解:$\underset{lim}{h→0}$$\frac{f({x}_{0})-f({x}_{0}-2h)}{h}$=2$\underset{lim}{h→0}$$\frac{f({x}_{0})-f({x}_{0}-2h)}{2h}$=2f′(0)=8,
故选:C.

点评 本题考查了导数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)在棱PC上是否存在一点M,使二面角M-BQ-C为30°,若存在,确定M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x<1}\\{{x}^{2}-4x+5,x≥1}\end{array}\right.$
(1)求f(0)+f(1)的值;
(2)求使得f(x)<5成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.教师节到了,为丰富节目生活,学校组织教师歌唱比赛,通过海选共6名教师进入决赛,其中两名男教师四名女教师,比赛通过随机抽签的方式决定出场顺序.
(1)求两名男教师恰好在前两位出场的概率;
(2)若比赛中两位男教师之间的女教师的人数记为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义非空集合A的真子集的真子集为A的“孙集”,则集合{2,4,6,8,10}的“孙集”个数为26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四边形ABED是边长为2的菱形,△CDE为正三角形,B,E,C三点共线,现将△ABD沿BD折起形成三棱锥A′-BCD.
(1)求证:A′E⊥BD;
(2)若平面A′BD⊥平面ABCD,求直线CD与平面A′BC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在三棱柱ABC-A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,∠BB1C1=60°,平面AA1B1B⊥平面BB1C1C.
(Ⅰ)求证:B1C⊥AC1
(Ⅱ)设点E,F分别是B1C,AA1的中点,试判断直线EF与平面ABC的位置关系,并说明理由;
(Ⅲ)求二面角B-AC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:平面PAC⊥平面ABC;
(2)求二面角M-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,E为CB1与BC1的交点.
(1)求证:DE∥平面ACC1A1
(2)求直线BC1与平面DB1C所成角的正弦值.

查看答案和解析>>

同步练习册答案