精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间;
(Ⅱ)若对于都有成立,试求的取值范围;
(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.

(Ⅰ)的单调增区间是,单调减区间是(Ⅱ)(Ⅲ)

解析试题分析:(Ⅰ)定义域
得增区间得减区间
(Ⅱ),所以函数最小值为,要满足恒成立,只需
(Ⅲ)
,减区间为,增区间为,函数在区间上有两个零点,所以
代入解得
考点:函数导数的几何意义及利用导数判定单调性求最值
点评:导数的几何意义:函数在某一点处的导数值等于该点处的切线斜率;求函数的增减区间只需解导数大于零小于零的不等式;第二问中将不等会恒成立问题,第三问中将函数零点问题都可转化为求函数的最值问题,这种转化是函数题目常用的求解思路

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(Ⅰ)求的极值;
(Ⅱ)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数恒过定点
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)求函数的零点;
(2)若方程上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义在区间上的偶函数,且满足
(1)求函数的周期;
(2)已知当时,.求使方程上有两个不相等实根的的取值集合M.
(3)记,表示使方程上有两个不相等实根的的取值集合,求集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的解集
(2)若关于的不等式的解集是,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)证明:对于一切的实数x都有f(x)x;
(2)若函数存在两个零点,求a的取值范围
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,
OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交
于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件
的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成
为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案