| A. | [π,4π] | B. | [2π,4π] | C. | [3π,4π] | D. | (0,4π] |
分析 设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,可得R2=3+(3-R)2,解得R=2,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.
解答
解:如图,设△BDC的中心为O1,球O的半径为R,
连接oO1D,OD,O1E,OE,
则${O}_{1}D=3sin6{0}^{0}×\frac{2}{3}=\sqrt{3}$,AO1=$\sqrt{A{D}^{2}-D{{O}_{1}}^{2}}=3$,
在Rt△OO1D中,R2=3+(3-R)2,解得R=2,
∵BD=3BE,∴DE=2
在△DEO1中,O1E=$\sqrt{3+4-2×\sqrt{3}×2×cos3{0}^{0}}=1$
∴$OE=\sqrt{{O}_{1}{E}^{2}+O{{O}_{1}}^{2}}=\sqrt{2}$
过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为$\sqrt{{2}^{2}-(\sqrt{2})^{2}}=\sqrt{2}$,最小面积为2π
当截面过球心时,截面面积最大,最大面积为4π.
故选:B.
点评 本题考查了球与三棱锥的组合体,考查了空间想象能力,转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1-e2]∪[e2-1,+∞) | B. | [1-e2,e2-1] | ||
| C. | (-∞,e-2-1]∪[1-e-2,+∞) | D. | [e-2-1,1-e-2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\sqrt{x}$ | B. | y=tanx | C. | $y=x+\frac{1}{x}$ | D. | y=ex-e-x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{18}{20}$ | C. | $\frac{112}{125}$ | D. | $\frac{17}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com