精英家教网 > 高中数学 > 题目详情
19.“方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆”是“-3<m<5”的(  )条件.
A.必要不充分B.充要C.充分不必要D.不充分不必要

分析 根据椭圆的定义和性质,利用充分条件和必要条件的定义进行判断即可.

解答 解:若方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆,则满足$\left\{\begin{array}{l}{5-m>0}\\{m+3>0}\\{5-m≠m+3}\end{array}\right.$,即$\left\{\begin{array}{l}{m<5}\\{m>-3}\\{m≠1}\end{array}\right.$,
即-3<m<5且m≠1,此时-3<m<5成立,即充分性成立,
当m=1时,满足-3<m<5,但此时方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.
故“方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆”是“-3<m<5”的充分不必要条件.
故选:C.

点评 本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若直线l的方向向量为$\overrightarrow{a}$=(1,0,2),平面α的法向量为$\overrightarrow{n}$=(-2,0,-4),则(  )
A.l∥αB.l⊥α
C.l?αD.l与α相交但不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.国家物价部门在2015年11月11日那天,对某商品在网上五大购物平台的一天销售量及其价格进行调查,5大购物平台的售价x元和销售量y件之间的一组数据如表所示:
价格x99.51010.511
销售量y1110865
由散点图可知,销售量y与价格x之间有明显的线性相关关系,已知其线性回归直线方程是:y=-3.2x+a,则a=(  )
A.24B.35.6C.40D.40.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知m∈R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0.
(1)求直线l斜率的取值范围;
(2)直线l与圆C相交于A、B两点,若△ABC的面积为$\frac{8}{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x∈R,x2+1>0,命题q:若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,若$A=\frac{π}{6},a=2,b=2\sqrt{3}$,则B=(  )
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆E的左、右焦点分别为F1、F2,过F1且斜率为$\frac{4}{3}$的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为(  )
A.$\frac{5}{7}$B.$\frac{1}{3}$C.$\frac{\sqrt{7}}{7}$或$\frac{5}{7}$D.$\frac{5}{7}$或$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是设三棱锥A-BCD的三侧面ABC,ACD,ADB两两垂直,则S△BCD2 =S△ABC2+S△ACD2+S△ADB2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若sinA+cosA=$\frac{7}{12}$,则这个三角形是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形

查看答案和解析>>

同步练习册答案